Diskret verknotet
Knotentheorie und diskrete Mathematik

Dorte Haftendorn

Zusammenfassung: Die Knotentheorie ist ein in Lehramtszusammenhdngen
recht unbekanntes Gebiet. Aber sie bietet auf verschiedenen Niveaus gute
Mdoglichkeiten, mathematisches Handeln, Uberlegen, Argumentieren, Kommu-
nizieren und diskretes Rechnen zu tiben. Zudem kann der Aufbau einer ma-
thematischen Theorie in eindrucksvollerer Weise mitvollzogen werden als es in
den ,,groRen* Theoriegebduden fir Lernende moglich ist.

Obwohl Seemannsknoten u.&. einen guten Einstieg bilden, ist schon der Begriff
des mathematischen Knotens, der stets geschlossen ist, eine Abstraktion. Kno-
ten kénnen durch einfache Bewegungen ihre Gestalt verdndern, man ist tber-
zeugt, dass es sich in jedem Moment um denselben Knoten handelt. Aber die
groRRe Herausforderung ist es zu entscheiden, ob zwei vorgelegte Knoten nun in
diesem Sinne isomorph sind oder nicht. Dazu werden drei erlaubte Bewegun-
gen, die ,,Reidemeister-Bewegungen®, herauskristallisiert und ,,Knoteninvari-
anten® gebildet, die diese Bewegungen (berstehen. Solche Knoteninvarianten
sind die Dreiféarbbarkeit, allgemein p-Etikettierbarkeit, und diverse Knoten-
polynome. Da Knoten eine endliche Anzahl von Kreuzungen und Bdgen ha-
ben, gehort die Arbeit mit Knoteninvarianten zu Diskreten Mathematik. Es
kommen modulo-Rechnen, Bildung von Matrizen, Determinanten und Poly-
nome vor. Die ganz tiefen Sétze sind in ihrer Aussage einleuchtend, ihre Be-
weise wirden den Einsatz von Topologie erfordern. Von den behandelten Sat-
zen und Aussagen werden in diesem Beitrag fast alle Beweise wirklich ge-
fihrt, denn die dafiir nétige Formalisierung® ist sehr tiberschaubar und kann
schon auf Schulniveau - mindestens aber im Grundstudium - verstanden oder
sogar eigenstandig gefunden werden. Dem Beitrag liegen Erfahrungen in der
Lehrerausbildung (im Umfang von drei bis vier Doppelstunden) zugrunde.

! [Haftendorn 1]



Einstimmung
Erfahrungen mit Knoten in unserer Welt

Einen Knoten zu machen, eine Schleife zu binden erfullt die kleinen Kinder zu
recht mit Stolz. In vielen Bereichen des Alltags, im Sport, im Beruf, in der
Freizeit sind spezielle Knoten ublich: Weberknoten, Anglerknoten, Seemanns-
knoten, Bergsteigerknoten, Chirurgenknoten u.s.w.. Es gibt preiswerte
hervoragend bebilderte Biicher? dazu. Das Thema trifft meiner Beobachtung
nach in allen Altersstufen auf ein reges Interesse.

Die in diesem Beitrag angesprochenen Adressaten sind zundchst einmal Men-
schen, die selbst erfahren wollen, was die Knoten mit Mathematik zu tun ha-
ben, was eine Knotentheorie zu bieten hat, inwiefern sie in das Gebiet der Dis-
kreten Mathematik reicht. Ganz ausdriicklich mdchte ich dazu ermuntern, eini-
ge Schritte in der mathematischen Knotentheorie flr Schiler und Studenten
aufzubereiten. Entsprechende fundierte Hilfen sollen hier gegeben werden.

Erste didaktische Bemerkungen

Auch fiir Studierende ist ein handlungsorientierter Einstieg sinnvoll. Ein ge-
schlossener Knoten ist zu knlpfen und dann zu ,,zeichnen®. Letzteres ist schon
eine gar nicht so leichte Anforderung, einschlief3lich der Diskussion, welche
Anforderungen an eine Knotenzeichnung wohl gestellt werden missen. Die im
nachsten Abschnitt gegebene Knotendefinition und die Regeln der Standard-
projektion fallen dann auf fruchtbaren Boden.

Ein gerade fir die Schule sehr anregendes Buch mit vielerlei ,,Puzzle* genann-
ten Aufgaben bietet Heather McLeavy®. Es behandelt - wie auch dieser Beitrag
- Primknoten, Reidemeisterbewegungen, Dreifédbbarkeit. Darliberhinaus geht
die Autorin auch auf die handwerklichen Knoten, Spiegelung von Knoten und
Kreuzungszahl auf Schulniveau ausfihrlicher ein.

2 [Constantino], [Budworth]
3 [McLeavy] in englischer Sprache und dreifarbigen Bildern.



Grundbegriffe fir mathematische Knoten
Definition

Ein mathematischer Knoten ist definiert durch einen geschlossenen Polygon-
zug im 3D-Raum mit endlich vielen Punkten ohne Doppelpunkte. Er wird auf-
gefasst als topologisches Objekt, die erzeugenden Punkte und Strecken sind
weder in ihrer geometrischen Lage noch in ithrer Lange oder Dicke wesentlich.

Mit der freien Software KnotPlot* ist diese Definition eindrucksvoll nachvoll-
ziehbar. Man setzt die Punkte im virtuellen Raum und kann sie dann verbergen.
Dies zeigen Abb. 1a und 1b.

Abb. 1 a Knoten als Polygonzug, 1 b als topologisches Objekt, 1 ¢ als Diagramm

In Abb. 1c ist ein Knotendiagramm in Standardform angegeben. An den Kreu-
zungen wird der unten liegende Strang durchbrochen dargestellt. An jeder
Kreuzung darf es stets nur einen uberkreuzenden Bogen und zwei unterkreu-
zende Bogen geben. Ein Bogen reicht von einer Unterkreuzung bis zur ndchs-
ten. Im Diagramm Abb. 1c hat der Knoten vier Kreuzungen und vier Bdgen. In
etwas andere Lage - in Abb. 1b rdumlich von unten rechts gesehen und in Abb.
2 b dargestellt - kann man denselben Knoten auch mit drei Kreuzungen und
drei Bogen zeichnen. Die Anzahl von Kreuzungen oder Bogen sind also keine

* [KnotPlot] Freeware, bzw. Shareware des Kanadiers Rob Sharein



invarianten Eigenschaften von Knoten. Darauf geht der ndchste Hauptab-
schnitt ausfuhrlich ein.

Orientierung

Knoten kdnnen orientiert werden, indem an einer Stelle ein Durchlaufrichtung
gewéhlt wird, in der dann der ganze Knoten durchlaufen wird. Dieses fiihrt zur
Unterscheidung von rechtshandigen und linkshandigen Kreuzungen. Wie in
Abb. 2a zu sehen, zeigt man an einer Kreuzung mit dem Daumen in Richtung
des Uberkreuzenden Bogens und winkelt die Finger unter dem Daumen ab.
Zeigen sie bei der rechten Hand in Richtung der unterkreuzenden Bdgen, so
heil3t die Kreuzung rechtshandig, anderenfalls heif3t sie linkshandig.

MO (S

Abb. 2 a Handigkeit, 2 b Rechts-Kleeblattknoten, 2 ¢ Links-Kleeblattknoten, 2 d Unknoten

Der Knoten in Abb. 2b entsteht aus dem Knoten in Abb. 1c, indem man den in
der Mitte nach unten fihrenden Bogen nach links oben legt. In seinem Dia-
gramm sind alle Kreuzungen rechtshédndig. Im Knoten in Abb. 2c ist dagegen
an jeder Kreuzung oben und unten vertauscht. Es ist der linkshéndige
Kleebblattknoten entstanden. Die beiden Kleeblattknoten (treefoil knots) lassen
sich nicht ineinander uberfiinren. Ubrigens spielt die Wahl der Orientierung bei
den Kleeblattknoten keine Rolle.

Aufgabe der Knotentheorie

Auch der Knoten in Abb. 2d kann nicht aus den anderen entstehen, denn es ist
der Unknoten. Den groBen Bogen, der obenauf liegt, kann man nach unten
drehen, dabei fallen alle Kreuzungen weg. Den Unknoten muss man zu den
Knoten rechnen, ebenso wie die Null als Zahl gelten muss.



Schon diese ersten Beispiele zeigen, dass es nicht trivial ist, einen Knoten von
anderen und vom Unknoten zu unterscheiden. Knotendiagramme, aber auch
raumliche Darstellungen von Knoten reichen nicht aus, Gleichheit® oder Unter-
schiedlichkeit zu ,,sehen®. Das zeigen die beiden Paare in Abb. 3. Links ist das
beriihmte Perko-Paar dargestellt.

Perko A (10,¢,) Perko B (10,4,)

Abb. 3 Zwei paare gleicher Knoten: 3 a Perko-Paar, 3 b Paar aus dem Unterricht

Erst 1974 bewies K.A. Perko, dass es sich bei den Knoten in Abb. 3a um zwei
Darstellungen desselben Knotens handelt. Den rechten der Knoten in Abb. 3b
hat ein Student in der oben erwahnten Handlungsphase geknupft. Stimmt er mit
dem linken, der in einer Kontentabelle steht, tiberein?

Isomorphie - Isotopie - Gleichheit - Aquivalenz von Knoten

Die intuitive Vorstellung, dass ein Knoten, den man mit einem Seil kn(pft,
dessen Enden man dann unaufl6slich verbindet, immer gleich bleibt, egal, wie
man ihn halt oder hinlegt, ist durchaus auch mathematisch richtig.

Denkt man an die Definition eines Knotens als Streckenzug, so ware eine
Auivalenzrelation zu definieren, bei der alle so erhaltenen Knoten in eine
Aquivalenzklasse fallen. Dementsprechend hatte man mit einem vorgelegten
Knoten nur einen Représentanten dieser Klasse. Wie auch bei Bruchzahlen,
Vektoren u.s.w. betrachtet man diese Repésentanten als Erscheinungsformen
ein und desselben -stets gleichen - Objektes. Lediglich bei aquivalenten Glei-

> Die Prazisierung von ,,Gleichheit” - Aquivalenz - Isotopie - Isomorphie folgt.



chungen behélt man das Wort ,,dquivalent” bei, da man mit einer ,,gleichen*
Gleichung Verwirrung stiften wiirde. Hinter den verschiedenen Knotendia-
grammen, radumlichen Représentationen und deren ebenen Bildern stellt man
sich also den stets gleichen Knoten vor. Man spricht also von dem Knoten.

AuBer Aguivalenz sind auch die topologischen Begriffe Isotopie und Iso-
morphie in Gebrauch. Ich verwende gern Isomorphie (wortlich ,,gleiche Ge-
stalt”), weil bei wirklich gleichen Knoten auch andere strukturelle Eigenschaf-
ten wie Handigkeit der Kreuzungen, Orientierung, diverse Kennzahlen u.a.
eine Rolle spielen. Isotopie wortlich ,,gleicher Ort“ leuchtet mir nicht so ein,
aufler dass solche Knoten in toplogischem Sinne gleich sind.

Reidemeister Bewegungen

Eine Formalisierung der obengenannten Aquivalenz ist fiir die genannte Adres-
satengruppe nicht unbedingt nétig, denn Kurt Reidemeister, der 1932 auch die
oben genannte Knotendefinition® gab, kristallisierte schon 1926 drei
Bwegungen heraus, die einen Knoten in einen aquivalenten Knoten tberfthren.

-

¢ “ L e w .o\ / /

Abb. 4 Die drei Reidemeister-Bewegungen, sie verandern den Knoten nicht.

1. Eindrehen oder Aufdrehen einer Schlaufe
2. Ubereinanderlegen zweier Bogen oder Trennen solcher Uberlagerung
3. Verlegen eines Bogens von einer Seite einer Kreuzung auf die andere

Es leuchtet unmittelbar ein, dass diese drei Bewegungen den Knoten nicht
verandern.

® [Reidemeister] Knotentheorie 1932 in [Epple] S.11



Reidemeister und nachfolgende Mathematiker bewiesen, dass auch umgekehrt
je zwei Knotendiagramme desselben Knotens sich durch eine endliche Folge
dieser Reidemeisterbewegungen ineinander tberfihren lassen.

In konkreten Féllen wie sie Abb. 3 zeigt, kann es sehr mihevoll sein, wirklich
die einzelnen Reidemeisterschritte durchzufiihren. Es scheint dann einfacher zu
sein, den Knoten entsprechend der einen Darstellung zu knupfen und ,,von
Hand* in die andere Darstellung zu Gberfuhren. lhre eigentliche Kraft entfalten
die Reidemeisterbewegungen bei der Herleitung von Knoteninvarianten.

Grundsatzliches zu Knoteninvarianten

Die Idee ist, dass man einem Knotendiagramm eine Eigenschaft - eine Zahl,
eine Etikettierung, eine Matrix, ein Polynom, eine Gruppe, einen Zopf u.s.w. -
zuordnet, von der man bewiesen hat, dass sie die ,,Reidemeisterbewegungen
Ubersteht*, dass also das durch Reidemeister-Bewgungen entstandene Knoten-
diagramm die betreffende Eigenschaft weiterhin hat. Eine solche Eigenschaft
heillt Knoteninvariante. Sie teilt die Menge aller denkbaren Knoten in zwei
Klassen ein: die Knoten mit dieser Eigenschaft, und die Knoten ohne diese
Eigenschaft.

Liegen zwei Knoten bezuglich einer Knoteninvarianten in zwei verschiedenen
Klassen, so sind es wirklich verschiedene Knoten. Fallen sie in dieselbe Klasse,
ist noch nichts entschieden.

Im Folgenden wird dieser Beitrag die Dreifarbbarkeit, allgemeiner die p-
Etikettierbarkeit und die Alexanderpolynome ausfiihrlich behandeln. Mit den
letzteren beiden werden eigentlich nicht nur zwei Klassen von Knoten erzeugt,
sondern jeder Wert von p und jedes Alexanderpolynom steht fiir eine Klasse.

Es gibt noch viele weitere Knoteninvarianten (Jones-Polynom, Conway-
Polynom, HOMEFLY-Polynom, Signatur, Entknotungszahl u.a.), aber bisher
keine, die jeden Knoten von jedem anderen trennt. Fiir die Adressaten einer
Unterrichtseinheit ,,Knotentheorie* zeigen die drei Invarianten dieses Beitrags
aber deutlich genug das grundsatzliche VVorgehen. Sie haben zudem den Vor-
teil, dass sie ,,von Hand* fur Schuler und Studierende berechnet werden kon-
nen und durch die Verwendung von Matrizen, Determinaten und Polynomen



zeigen, wie die Ublichen mathematischen Werkzeuge in ganz neuen Bereichen
zur Wirkung kommen.

Die Dreiféarbbarkeit ist sogar ab dem jungen Schulalter mit Buntstiften zu reali-
sieren und sie bietet ein schones Beipiel flr mathematisches Argumentieren
und Beweisen.

Zerlegung von Knoten, Primknoten, Knotentafeln

Manche Knoten kann man durch einen geraden Schnitt in zwei Teile zerlegen,
die beide nicht der Unkoten sind. Dazu braucht man eine Darstellung des Kno-
tens, bei der ein gerader Schnitt genau zwei Bogen teilt, die man auf jeweils
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Abb. 5 a Zusammengesetzter Knoten, 5 b Ermdéglichung der Schnitte, 5 ¢ drei Primknoten

Ein solcher Knoten hei8t zusammengesetzter Knoten. Ist so eine Teilung nicht
moglich, ist der Knoten ein Primknoten.

SOPOB RO
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Abb. 6 Primknotentafel aus KnotPlot von 3; bis 8,



Horst Schubert” bewies 1949, dass jeder Knoten eine eindeutige Primknoten-
Zerlegung hat. Daher ist es lohnend die Primknoten mit wenigen Kreuzungen
in einer Tabelle oder Tafel wie in Abb. 6 zu erfassen. Sie werden mit ny be-
zeichnet, wenn Sie in der Familie der Knoten mit n Kreuzungen in der Tabelle
den Platz k haben. Bis zum Knoten 949 gibt es 85 Knoten®, Einigermalen ver-
lassliche Knotentafeln gibt es seit Ende des 19. Jahrhunderts.® Abb. 3 zeigt das
Perko-Paar, das erst 1974 als nicht-verschieden nachgewiesen wurde.

Eine Knotentafel gibt auch Anlass, einen selbst erfundenen Knoten mit nicht zu
vielen Kreuzungen entweder dort zu finden oder ihn als Zusammensetzung zu
identifizieren. Auller dem Handeln mit Seilen und dem Augenschein helfen
hier die unten besprochenen Knoteninvarianten.

Dreifarbbarkeit

Obwohl Dreiféarbbarkeit als Sonderfall der p-Etikettierbarkeit fur p=3 aufge-
fasst werden kann, wird sie in diesem Beitrag eigenstandig behandelt.

Definition: Ein Knoten heif3t 3-farbbar, wenn sich eins seiner Knotendiagram-
me nach folgenden Regeln einféarben lasst:

(1) Jeder Bogen hat zwischen zwei Unterkreuzungen eine einheitliche
Farbe.

(2) Eine Kreuzung ist entweder einfarbig oder es treffen sich genau drei
Farben.

(3) Es gibt eine Kreuzung, die nicht einfarbig ist.

Es ist sicher sinnvoll, die Lernenden mit Buntstiften probieren und dabei ein
planvolles VVorgehen entwickeln zu lassen. Z.B. wahlt man eine Kreuzung aus
und farbt die Bégen mit drei Farben'. In Abb. 7 ist dann sofort der ganze Kno-

7 Zitiert nach [Sossinskij] S. 73 ff

8 Knotentafel in [Livingston] S. 198 ff

% [Epple] S.154 ff

1% Hier sind wegen des Schwarz-WeiR-Druckes auch Farbnummern geschrieben.
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ten zul&ssig gefarbt. Beim né&chsten Knoten ist bei A begonnen. Bei C misste
nun der tberkreuzende Bogen blau (Farbe 3) sein, dann werden aber bei B und
D die Regeln verletzt. Daher muss man neu beginnen und A als einfarbige
Kreuzung wéhlen. Das erzwingt bei B,C und D dieselbe Farbe zu nehmen, der
Knoten ist einfarbig geworden. Damit ist die Entscheidung gefallen: Knoten 4,
ist nicht 3-farbbar. Der rechte Knoten 6, ist 3-farbbar. Beginnend bei A hangelt
man sich in den Knoten hinein und kann alle Bedingungen erftllen.

A £
/ < J 1 4
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Abb. 7 Farbungsversuche beim Kleeblattknoten, beim 4;-Knoten und rechts beim 6;-Knoten

Es gibt durchaus Knoten mit Kreuzungen, die einfarbig sein mussen. Wahlt
man zuféllig beim Start, oder wenn man im weiteren Verlauf eine Wahl treffen
muss, eine solche Kreuzung als dreifarbig, kommt man auf Widerspriiche, die
aber nicht bedeuten, der Knoten sei nicht 3-farbbar. Ein Beispiel ist Knoten 7.

Die Knotenfarbung ist also sowohl Anlass fir sinnvolles Handeln als auch fir
gute und genaue logische Argumentation. Diese wird noch mehr herausgefor-
dert beim (interaktiven) Beweis, dass die Dreifarbbarkeit eine Knoteninvarian-
te ist.

Beweis der Invarianten-Eigenschaft

"Ni v". -/
1 Semed h .1.

Abb. 8 Ein 3-farbiger Knoten bleibt nach den drei Reidermeister-Bewegungen 3-farbig

s\



11

Ein Knoten sei erfolgreich dreigefarbt. In Abb. 8 betrachtet man quasi unter der
Lupe nur relevante Ausschnitte. Eine Schlaufe ist nach den Férberegeln eine
einfarbige Kreuzung. Nach Aufdrehen der Schlaufe hat der Bogen gerade
diese Farbe. Beim Ubereinanderschieben zweier verschieden farbiger Bdgen
entstehen zwei Kreuzungen, die nach den Regeln dreigefarbt werden kénnen.
Fur die dritte Reidemeisterbewegung wird der Fall betrachtet, in dem alle drei
Kreuzungen dreigefarbt sind. Wie Abb.8 zeigt, wird nach Verlegung des obe-
ren Bogens eine Kreuzung einfarbig, aber die Bogen, die in den nicht néaher
betrachteten Knoten gehen, behalten ihre Farbe. Auch die weiteren Félle bertih-
ren die Dreifarbbarkeit des Knoten nicht. Man zeigt das ebenso. In diesem
Beitrag folgt es auch dem Beweis bei der p-Etikettierbarkeit fiir p=3.

p-Etikettierbarkeit
Definition:

Sei p sei eine naturliche Zahl groRer als 2. Spater wird sich zeigen, dass vor
allem Primzahlen relevant sind.

Der Knoten heiRt p-etikettierbar, wenn alle Kreuzungen mit (Farb-)Zahlen
modulo p so beschriftet werden konnen, dass die Gleichung

2X— Y—2= O gilt, wobei x fiir das Etikett des tiberkreuzenden Bogens, y
P

und z flr die Etiketten der beiden unterkreuzenden Bdgen steht. Dabei muss

mindestens ein Etikett von den anderen verschieden sein.

Dreifarbbarkeit ist ein Spezialfall fur p=3

An einer dreifarbigen Kreuzung kommen als Etiketten Zahlen aus dem Rest-

klassenkorper Z3={0,1, 2} infrage. Es gilt dann eine der Gleichungen

2:0-1-2=-3=0 v 2:1-0-2=0=0 v 2-2-0-1=3=0 , die Bedingun-
3 3 3

gen fur 3-Etikettierung sind also erfullt. Eine einfarbige Kreuzung mit der

Farbe a erfillt 2-a-1-a—2-a=0-a= 0 . Ein dreifarbbarer Knoten ist also 3-
3
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etikettierbar. Umgekehrt nimmt man die Etiketten als Farben, die Begriffe
brauchen nicht unterschieden zu werden.

Die Dreifarbbarleit ist hier eigenstandig aufgefuihrt, da sie mit viel einfacheren
Mitteln als dem Rechnen modulo 3 durchgefiihrt und auch bewiesen werden
kann. Zur Vereinfachung der Sprechweise werden die Etiketten auch ,,Farben*
genannt und zu p-etikettierbar kann auch p-farbbar gesagt werden.

Satz zur p-Etikettierbarkeit

1. Eine Kreuzung darf einfarbig sein.

2. Eine nicht-einfarbige Kreuzung hat genau drei Farben.

3. Istein einziges Knotendiagramm p-etikettierbar (p-farbbar), dann sind
alle Diagramme desselben Knotens p-etikettierbar (p-farbbar).
Invarianteneigenschaft

Beweis: zu 1.: Esgilt x=y=z = 2-Xx-y—-7z=2-Xx—-X—-x=0-x=0 .
p

Zu 2.. Wenn zwei Bogen dieselbe Farbe haben, hat auch der dritte Bogen diese

X=yYy=>2X-Yy—-7=2X-X-2=X-2=0<x=2

P P
y=2=2Xx-y-2=2Xx-2y=0<2(x-y)=0 < x=y
p P pprim P

Farbe, denn:

Zu 3.. Der Beweis erfolgt dadurch, dass man zeigt, dass ein p-etikettiertes
Knotendiagramm die Reidemeisterbewegungen ,,ubersteht*.

X X! la: y=x trivialerweise

: 44

/@ '-':"—,,-:'— )

ly ; 1b: 2x—-x—y=x-y=0<x=y

-'. X: p p

x.¥. . X Y. 2a: y =z wird bezeichnet.

ul)y — ) Al 2X—Uu-z=2x-Uu-y=0u=2x-y

B: 2x-u-y=0&u=2x-y
p P
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2b :Es gilt: (A: 2X—u—-y=0AB: 2x—u—zEOJ:> y=z
p

p p
X\ B/Y /Y Wenn der Knoten p-etikettierbar ist, gilt links:
-Z "w \
/ A:22-Xx-v=0 A
u
B: 2z2-y-w=0 A |=>U=2Z-2Xx+Yy
C:2v—-u-w=0
E: 22—-x-v=0 A E=A tistalso zu
F: 2x—-y-t=0 A |= t=2x-y den Regeln
D:2z-u-t=0 t=22-(22-2x+y)=2x-y passend
wahlbar.

Damit  ist gezeigt, dass ein  p-etikettierbarer = Knoten  alle
Reidemeisterbewegungen Ubersteht, ohne die p-Etikettierbarkeit zu verlieren.
Die Félle, dass einzelne der Kreuzungen einfarbig sind, werden von den Glei-
chungen auch erfillt und sind daher in den Beweisen enthalten.

Satz von der Vererbung der p-Etikettierbarkeit
Ein Knoten, der p-etikettierbar ist, ist auch (p-k)-etikettierbar.

Beweis: VkeN: 2x—-y-z=0=2x-k—-y-k—-z-k=0-k=0
p Y p

Satz von der Etikettierbarkeit zusammengesetzter Knoten

1. Ist in einer Zusammensetzung mehrerer Knoten wenigstens einer p-
etikettierbar, dann ist der ganze Knoten p-etikettierbar.

2. st in einer Zusammensetzung zweier Knoten einer p-etikettierbar und
der andere g-etikettierbar, dann ist der ganze Knoten sowohl p-
etikettierbar als auch g-etikettierbar als auch pg-etikettierbar.
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Beweis: Zu 1: An den p-etikettierbaren Knoten werden andere Knoten durch
Auftrennung eines Bogens angehéngt. Macht man die angehdngten Knoten
einfarbig in der Farbe des jeweils aufgetrennten Bogens, ergibt sich kein Prob-
lem. Alle Gleichungen gelten modulo p und der Gesamtknoten ist nicht einfar-
big.

Zu 2: Das Obige kann man fiir den g-etikettierbaren Teilknoten auch tun. Die
pg-Etikettierbarkeit folgt aus dem Vererbungssatz.

Anmerkung: Werden zwei p-etikettierbare Knoten zusammengesetzt, kann
man den anknlpfenden Bogen so farben, dass er passt. Dies folgt aus der Ho-
mogenitét des Gleichungssytems, wie unten gezeigt.

Das Gleichungssystem und allgemeine Aussagen tiber mégliche p

Ein Knoten habe n Kreuzungen. Dann hat er auch n Bdgen, denn ein Bogen
beginnt an an einer Unterkreuzung, an der nachsten Unterkreuzung beginnt ein
neuer Bogen u.s.w.. So hat jede Kreuzung genau einen dort beginnenden Bo-
gen.

Fir eine p-Etikettierung muss man nun n Gleichungen mit n Variablen fir die
Bogenetiketten aufstellen. Dazu gehdrt ein homogenes, lineares Gleichungs-
system mit einer n x n-Matrix. Jede einheitliche Etikettierung mit Null oder
einer anderen Zahl ist sicher Losung. Damit gibt es mehr als nur die triviale
Ldsung, woraus folgt, dass die zugehdrige Determinante Null ist und man eine
Gleichung fortlassen kann. Da bei homogenen Gleichungssystemen auch
Summen und Vielfache von Ldsungen wieder Losungen sind, kann man es so
einrichten, dass z.B. der letzte Bogen mit Null etikettiert wird. So wird es
sinnvoll, eine Zeile und eine Spalte fortzulassen. Dass dabei eine beliebige
Zeile genommen werden kann, erlautert Livingston*’.

Das so reduzierte Gleichungssystem ist wieder homogen. Es hat nur eine nicht-
triviale LOosung, wenn die zugehdrige Determinante Null ist. Im Allgemeinen

1 [Livingston] S. 41
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ist diese Determinante aber eine ganze Zahl m. Eine Null und damit nicht-
triviale Losungen, kann man also nur in Restklassenringen erwarten.

Satz von den moglichen p fir die p-Etikettierbarkeit.

Stellt man fir einen Knoten mit n Kreuzungen und n Bdgen das der Definition
der p-Etikettierbarkeit entsprechende Gleichungssystem auf und streicht aus
der zugehdrigen Determinante je eine beliebige Zeile und Spalte, so erhélt man
die Determinante D,eq . FUr sie gilt:

(Dred =m, meZ, p Primfaktor vonD, p > 2 ) = Knoten ist p - etikettierbar.

Beweis: Es gilt Dyoq =m =0, damit existiert nach dem oben Gesagten eine
p

eine nicht-triviale LoOsung, d.h. es gibt Etiketten ungleich O und alle p-
Etikettierbarkeitsbedingungen sind mit diesem p erfillt.

Folgerung: Ist zudem g ein Primfaktor, so ist der Knoten auch g-etikettierbar,
pg-etikettierbar und m-Etikettierbar. Darum werden bevorzugt nur die Primfak-
toren betrachtet.

Anmerkung: Mit den mathematischen Werkzeugen von Schilern und Studie-
renden lassen sich die Determinaten der Uberschaubaren Knoten berechnen,
nicht aber Gleichungssysteme in Restklassenkdrpern lésen. Mit Mathematica
- und ahnlich starken CAS - ist das moglich. Dann muss zwar p konkret einge-
tragen werden, aber man kann bequem einige kleine Primzahlen durchprobie-
ren, wenn man den obigen Satzt nicht kennt. Siehe Abb. 9 rechts.

Maglichkeiten ohne obigen Satz von Hand

Die Matrix des Gleichungssystems ist recht diinn besetzt, denn jede Zeile ent-
hélt i. d. R. nur drei Eintrdge, ndmlich eine Zwei und zwei negative Einsen.
Dabher ist es fur kleine n noch aussichtsreich, das reduzierte System von Hand

zu l6sen. Im Beispiel des Knoten 5.2 erhdlt man etwa 7x=0 im letzten Schritt.
p

Ein nicht-triviales x ist also nur fur p=7 moglich. Knoten 5.2. ist also 7-
etikettierbar. Diese Rechnung ist in Abb. 9 zu sehen.
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Mathematica, dnrekta Losung

1lo52 = "o'l‘t?[{? y-z=0, -Xs2z-0=0; ~g+2y-w=0,

7 xe2un-v=0, 9 a=10)}
u, v}, Woduloz + 7]
f{ix=+6C[L] «+2C[2], ¥y=2C[1] «+6C[2],
2 +3C[1] +3C[2), v=+C[2], v +C[1]}}
Dies bedeutel uund v beliebia aus Z2(7) wahlen, xy.2 berechnen
MWod[{x., ¥, z,u, v}, Tl /. (Lo52 /. {C[1]} -0, C[2] - 4))
3 1, 3, €
2 -1 -1 0
-1 0 2 -1
fmred = 0 2 -1 O : Det[fmred]
-1 0 0o 2

Abb. 9 Der Knoten 5.2, Rechnung zur p-Etikettierbarkeit von Hand und mit Mathematica

Didaktische Anmerkung

Die Dreifarbbarkeit eignet sich ohne Einschrankung fir jede Altersstufe und
sie zeigt in eindruchsvoller Weise, was eine Invariante ist und mit welcher
Grundidee die Welt der Knoten untersucht werden kann.

Die p-Etikettierbarkeit ist ein sinnvolles Thema in der Lehramtsausbildung, es
vertieft Kenntnisse aus der linearen Algebra und (bt auch das Beweisen an
uberschaubarem Gegenstand. Dass der Kleeblattknoten wirklich genau 3-
farbbar und nicht etwa 5-farbbar ist, sorgt fiir Uberraschung. Die Erkenntnis,
dass 5-Farbbarkeit nicht einfach heif3t: ,,man nehme funf Buntstifte”, ist ein
schoner Einblick in mathematisches VVorgehen.

Die Ubertragbarkeit auf zusammengesetzte Knoten oder allgemeine Uberle-
gungen zu Torusknoten s.u.) erweitern auch den mathematischen Blick.

5-Torusknoten

N @@ 2P s

Abb. 10 Der 5- und der k-Torusknoten und die p-Etikettierbarkeit
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Umwickelt man einen Torus mit einem Seil, das man dann schlief3t, entsteht
ein Torusknoten. In Abb. 10 sind Knotendiagramme von Torusknoten als ge-
schlossene Zopfe (s.u.) dargestellt. Ein k-Torusknoten hat k Kreuzungen. Beim
5-Torusknoten in Abb. 10 erkennt man, dass bei nur 4 Kreuzungen statt eines
Knotens eine Verschlingung von zwei Unknoten dargestellt ware. Es gilt der

Satz von den Torusknoten

1. k-Torusknoten existieren nur flr ungerade Zahlen k >2
2. Ein k-Torusknoten ist p-etikettierbar mit p prim, wenn p |k gilt, also

wenn p die Zahl k teilt.

Beweis: Zu 1. siehe oben. Zu 2.: Um zu zeigen, dass hier ein VVorgehen am
Beispiel leicht zu verallgemeinern ist, sei der Beweis zun&chst fur den 5-
Torusknoten durchgefiihrt. Fur alle 5 Kreuzungen werden die Gleichungen
entsprechend dem Etikettierungsvorschlag in Abb. 10 geprdift:

A:21-2-0=0;,B:2.2-3-1=0;C:2-3-4-2=0;D:2-4-0-3=5=0
p

E:2-0-4-1=-5=0 Die letzten beiden Gleichungen sind genau fur p=5
p

richtig. Also ist der 5-Torusknoten 5-farbbar. Der Kleeblattknoten ist der 3-
Torusknoten, er ist dreifarbbar, was schon oben bewiesen ist. Ein 1-
Torusknoten wére der Unknoten, er ist ,,1-farbbar®, dies ist in der Definition
ausgeschlossen.

Ein k-Torusknoten kann wie in Abb. 10 rechts etikettiert werden. Es ist zu
prifen, ob fur alle Kreuzungen die entsprechenden Gleichungen erfillbar sind.

a.2-1-2-k=-k=0<=k=0; ¢: 2-i—(1+1)—-(i-1)=0 Vvp
p p
w:2-k—(k-1)-1=k=0<=k=0< plk
p p

g.e.d.

Es folgt: Der p-Torusknoten mit p prim ist p-farbbar. Da immer auch alle
Vielfachen von p zu Etikettierungen fuhren, ist zum Beispiel der 15-
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Torusknoten r-etikettierbar mit r {3, 6, 9, 12,.. }u{5, 10,15, ...}. Man sieht
wieder, dass p-Etikettierbarkeit vor allem flr Primzahlen p interessant ist.

Alexanderpolynom

Epple® stellt die Entwicklung der Knotentheorie bis 1945 ausfiihrlich dar. Es
wird Kklar, wie vor allem in den zwanziger Jahren des vorigen Jahrhunderts um
Erkenntnisse und eine strenge Mathematisierung gerungen wurde. Ein Poly-
nom als Knoteninvariante konnten zuerst 1927 James W. Alexander und G. B.
Briggs vorstellen. Sie verfolgten zundchst topologische Ideen, kamen dann
aber zu diskreten Methoden auf der Grundlage von Knotendiagrammen. Dieser
Beitrag folgt zundchst Livingston®® in Form einer Handlungsanweisung. Die
ursprungliche Definition von Alexander wird auch vorgestellt.

Vorbereitung

In einem Knotendiagramm mussen die n Kreuzungen und die n Bdgen be-
schriftet werden. Weiter ist der Knoten zu orientieren, wobei die Richtung
beliebig ist. Fir jede der Kreuzungen ist nun die Handigkeit anzumerken. (Er-
klarung am Anfang des Beitrags.) In Abb. 11 sind die Kreuzungenl, 2 und 3
linkshandig, 4,5 und 6 rechtshandig.

Aufstellung der Alexandermatrix

Nun wird die Alexandermatrix aufgestellt, in der jede Kreuzung eine Zeile hat,
und jeder Boden eine Spalte. Fur jede Kreuzung wird fur den Uberkreuzenden
Bogen 1-t eingetragen, fiir die ankommenden und abgehenden Bégen t und -1
bei Linkskreuzungen, b.z.w. -1 und t bei Rechtskreuzungen. Siehe Abb. 11.

Die reduzierte Alexandermatrix erhalt man durch Streichen je einer beliebigen
Zeile und Spalte. Deren Determinante ist ein Polynom in t, bei dem man oft
noch t-Potenzen und ggf. (-1) ausklammern kann. Der verbleibende Faktor, ein

12 [Epple] 400 Seiten, Speziell zu Alexanderpolynom S.5 und S 339 ff
B [Livingston] S. 44 ff
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Polynom in t mit positiver hochster Potenz und nicht verschwindendem
Absolutglied ist das Alexanderpolynon des Knotens.

L.:hhs

t
t 0
0 0
kretred = =1 0 0 Tt &
- =
0

Expand [Det [kretred] / t]

RECH’; t1-3E+58%2 -3¢y ¢t Abxardefpownom
Abb. 11 Aufstellung des Alexanderpolynoms fiir den Studentenknoten in Abb. 3b rechts

Es war bei Abb. 3 die Frage aufgeworfen, ob der Knoten des Studenten (ganz
rechts in Abb. 3) isomorph ist zu dem Knoten 6.3.

Die drei Primknoten mit 6 Kreuzungen haben die Alexanderpolynome

6.1: 2t>-5t+2; 6.2: t1-3t3+43t°-3t+1 6.3: t*-3t3+5t2 -3t +1;
Der Studentenknoten und Knoten 6.3 haben dasselbe Alexanderpolynom. Da
ersterer auch Primknoten ist und es nur die drei Primknoten mit 6 Kreuzungen
gibt, ist der Studentenknoten wirklich isomorph (aquivalent, gleich) dem Kno-
ten 6.3.

3.1: t -t+1, 4.1: t? —3t3 +1;, 5.1: 4 -3+ 2 —-t+1,5.2: 2t% —3t3 + 2,
Dies sind die Alexanderpolynome der ersten Primknoten. Livingston** gibt
eine vollstdndige Liste bis zum Knoten 9.49. Nicht alle Polynome sind ver-
schieden, z.B. hat 9.46 dasselbe Polynom wie 6.1. Fiir 9.28 und 9.29 stimmen
die Polynome auch tberein. Auch beim Perko-Paar (Abb. 3) sind die Alexan-
derpolynome gleich.

 [Livingston] S. 205ff
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Ein Knoten heift alternierend, wenn jeder Bogen genau eine Uberkeuzung hat.
Es gibt auch nicht-alternierende Primknoten, z.B. 9.42 bis 9.48. Bei den 10ner
Knoten sind es 42, darunter Perko A (10.161).

Zum Beweis der Invarianteneigenschaft

Beim Beweis, dass das Alexanderpolynom die Reidemeisterbewegung 1 Uber-
steht, muss man in den tberkreuzenden Bogen einen Punkt einfligen und zwei
Bodgen daraus machen. Das neu eingefligte Bogenstiick hat keine Verbindung
mit anderen Kreuzungen. Entwickelt man dann die Determinante nach der
Spalte dieses Bogens, erhalt man dasselbe Alexanderpolynom wie ohne die
Schlaufe, Faktoren t oder -1 spielen ja keine Rolle.

Fir die Reidemeisterbewegung 2 hat man zwei Kreuzungen und zwei Bdgen
die wegfallen. Auch hier kommt man mit geschicktem Entwickeln der Deter-
minanten weiter, da das bei der p-Etikettierbarkeit u genannte Bogenstiick
keinen Kontakt zu anderen Kreuzungen hat.

Fur Reidemeisterbewegung 3 wird es eine aufwendige Fleil3arbeit.
Alternative Vorgehensweise, Alexanders ursprugliche Methode

Die n Kreuzungen werden be-

s 12229 zeichnet. Gebiete zwischen den

am - | ¥ ; 3 0 . 0 Bdgen werden mit rq bis r, einge-
X X

1001 xx tragen, ro muss an das AulRenge-
00101x

biet grenzen. Der orientierte Kno-

e e ten wird durchlaufen, bei jeder

,] Unterkreuzung werden links zwei
gebiete markiert.

1 -3 x+5% -3+ x

Alexanderpolynom

Abb. 12 Ursprungliche Methode zur Aufstellung des Alexanderpolynoms

In der Matrix hat wieder jede Kreuzung ihre Zeile, die Spalten gehdren zu den
Gebieten rq bis r,. Dabei wird rq weggelassen. Fir jede Kreuzung wird x ein-
getragen, wenn das Gebiet markiert ist, eine 1, wenn es an der Kreuzung betei-
ligt ist und 0 sonst. Die Determinante dieser Matrix ist bis auf den Faktor einer
t-Potenz oder (-1) das Alexanderpolynom.
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Zum Beweis: Das Uberstehen der Reidemeisterbewegungen 1 und 2 lauft wie
bei der anderen Verion auf passende Determinantenentwicklungen hinaus.
Fur 3 ist es ebenso mihsam. Fur den Beweis, dass es sich um dasselbe Alexan-
derpolynom handelt, habe ich nur sehr vage Andeutungen auf topologische
Methoden gefunden.

Didaktische Bemerkung

Die Alexanderpolynome sind mit Mitteln der Studierenden, aber auch von
Schilern berechenbar, da die Determinanten leicht beschafft werden kdnnen.
Statt der allgemeinen Beweise kénnte man mit Berechnungen an verschiedenen
Diagrammen desselben Knotens zufrieden sein. Besonders fur Lehramtsstudie-
rende ist es verbliffend und bildend, dass Polynome nicht nur als
Polynomfunktionen in ,,Kurvendiskussionen* eine Rolle spielen. Ziel einer
Lehreinheit ,,Knotentheorie®“ ist jedenfalls nicht, dieses Sachgebiet zu beherr-
schen, sondern - wie Sossinskij™ in seinem Untertitel sagt - zu erleben, ,wie
eine Theorie entsteht®.

Zo6pfe und Knoten

Dieses interessante Gebiet wird in diesem Beitrag nur ganz kurz vorgestellt.
Uberlegungen zu Zépfen hat man in den Handschriften von GauR® gefunden®.
Er hat aber nichts dazu publiziert. Die eigentliche Entwicklung setzte mit Emil
Artin'” und O. Schreier in Hamburg ein. Wie auch die Knoten kénnen Zopfe
eine Realisierung im dreidimensionalen Raum mit mehreren Strdngen haben,
die man sich ,,oben“ angebracht denkt. Benachbarte Strdnge kann man in ir-
gendeiner Reihenfolge kreuzen. Auch fir Zopfe gibt es eine standardisierte
Darstellung, die in Abb. 13 gezeigt ist. In einer Hohe darf stets nur eine
Keuzung gezeichnet werden. Nummeriert man die Startplatze der Strédnge
durch, so kann man eine Kreuzung mit A; bezeichnen, wenn der Strang von

1> [Sossinskij] Mathematik der Knoten, Wie eine Theorie entsteht
1% [Epple] S. 69
Y17 Artin, E (1925 a) : Theorie der Zoépfe, HA 5(1926, 7.23 (nach [Epple] S. 411
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Platz i den Strang von Platz i+1 tberkreuzt, mit a;, wenn er diesen unterkreuzt.
Die untereinander folgenden Kreuzungen bilden durch Hintereinanderschrei-
ben ihrer Bezeichnungen ein Zopfwort. Bei wenigen Strdngen schreibt man
auch A,a,B,b,C,c,.Dd....

1 2 3 4 5

ST (3N Wi WU
C i J xS T 7 [J B
4 ) P r\‘ A
ﬁﬂ..{ b A
X ,ﬁs j \\ At o¢ f’ J
. b
( r"’—‘ l A"‘ \ 10— H B
Aua, Ay by Wyt AbAL  AaABla ¢ =CA ABA BAB

Abb. 13 Zopfe und Zopfworte

Die Zopfworte eines Zopfes mit n Strdngen kdnnen als Elemente einer Gruppe
aufgefasst werden, deren erzeugende Elemente die A; sind, denn es leuchtet
unmittelbar ein, dass das Wort - oder Produkt - A; a; , wie es oben links auftritt,
als Einselement genommen werden kann, dass also A; und a; zueinander invers
sind. Diese Abfolge entspricht der zweiten Reidemeisterbewegung. Jeder Zopf
hat seinen inversen Zopf: zu ADbAb ist BaBa invers, denn
AbAbBaBa=AbAeaBa=AbAaBa=...=e.

Assoziativitat ist natirlicherweise gegeben und fiir die Abgeschlossenheit darf
man die Wortldnge nicht begrenzen. Die Zopfgruppen sind nicht kommutativ,
aber es gilt eine Fernkommutativitat. In Abb. 13 ist dies mit AC=CA gezeigt.
Der 3. Reidemeisterbewegung entspricht die Artin-Relation ABA=BAB.

Zwei Zopfe sind isomorph (&quvalent, gleich), wenn sich ihre Zopfworte mit
diesen Umformungen algebraisch ineinander tberfihren lassen.

In Abb.13 ist auch gezeigt, wie ein Zopf standardmélig platzweise geschlossen
wird: Aus dem AbAb-Zopf wird der 4, Primknoten. Es entstehen durch das
SchlieRen von Zopfen im Allgemeinen Knoten oder Verschlingungen. Zum
Beispiel kann man den Zopf AaABba kdmmen, es entstehen drei getrennte
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Unknoten, algebraisch: AaABba=eAea=e. Der erste Zopf in Abb. 13 wird
beim Schliefen zu einem Knoten: Man verfolgt Strang 1, er geht zu Platz 3,
Strang 3 geht nach 4, 4 -5, 5—2; 2—1. Es gilt der zentrale

Satz von Alexander
Jeder Knoten kann durch Schliel3en eines Zopfes gewonnen werden.

Wie man einen solchen Zopf aus dem Knoten konstruiert, fiihrt fir diesen
Beitrag zu weit. Im Absatz zu den Torusknoten (s.0.) war es ginstig, diese als
geschlossene Zopfe aufzufassen.

Obwohl man fiir Zopfe nun eine algebraische Beschreibung hat, gelang es
dennoch nicht, direkt auf diesem Weg die Knoten zu klassifizieren. Die Versu-
che seit den 1930-iger Jahren fihrten allerdings zu weiteren Knoteninvarianten,
z.B. 1980 zum Jones-Polynom®® und 1997 zu einer algorithmischen Lésung fiir
die Umformung von Zopfen®.

Didaktische Bemerkung

Die Zopfe ermdglichen Lernenden mehr eigene Tatigkeit und Entdeckungen
als die p-Etikettierbarkeit und Alexanderpolynome. Das (berraschende Auftre-
ten von algebraischen Vorgehensweisen in den Zopfgruppen erweitert und
festigt die mathematische Bildung. In der Software KnotPlot lassen sich Zopfe
durch Eingabe der Zopfworte erzeugen. Uberlegen die Lernenden erst selbst,
was sich beim SchlielRen ergeben wird, kann die Antwort in 3D-Darstellung
animiert vorgefiihrt werden. Verschlingungen werden verschiedenfarbig darge-
stellt. Mit Recht sind die Lernenden stolz, wenn sie richtig vorhergesagt haben.
Dieses Training des genauen Sehens und des rdumlichen Vorstellens ist auch
fir Schaler sinnvoll.

'8 [Epple] S.6
19 Dehornoy, P.:L‘art de tresser, in Pout la sience, dossier hors série, April 1997 ange-
geben nach [Sossinskij] S. 157 und S. 57 ff.
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Ausblicke und Anwendungen

Es ist klar, dass dieser Beitrag kein Lehrbuch der Knotentherie sein kann. Viele
Knoteninvarianten und stark topologische Uberlegungen sind fortgelassen.
Auch Erweiterungen in hoher dimensionale Raume fanden keine Bericksichti-
gung. Sossinskij*® erwéhnt StoRrichtungen der Forschung und Vernetzung mit
Physik und Statistik. Jedenfalls ist die Knotentheorie ein lebendiges und noch
»unfertiges* Forschungsgebiet.

Anwendungen der Knotentheorie haben sich in der Quantenfeldtheorie, der
Chemie langer Molekiile, der Biologie der DNA-Ketten und in weiteren Gebie-
ten ergeben. Die Theorie ist also nicht im Elfenbeinturm eingemauert, aber ich
wurde eine Unterrichtseinheit zur Knotentheorie nicht ,,anwendungsorientier-
ten Unterricht* nennen wollen.

Anschlieende didaktische Bemerkungen

In ihrer Staatsexamensarbeit ,,Knotentheorie in der Schule* gibt Sandra Ger-
hard?* eine Einordnung der Knotentheorie in Bildungsstandards und Kompe-
tenzanforderungen. Im fachwissenschaftlichen Teil stellt sie weitere schulisch
(vermutlich) erreichbare Knoteninvarianten vor. Die Vorgehensweisen sind
aber -verstandlich im Hinblick auf den Zweck der Arbeit - so formal, dass sie
m. E. in der vorgestellten Form nicht in die Schule passen. In der Lehrerausbil-
dung wirden Sie wohl ein ganzes Semester erfordern. S. Gerhard sagt aber
richtig: ,,Mathematikunterricht verliert an Authentizitat, wenn Handlungsorien-
tierung mit Anwendung gleichgesetzt wird, [wenn...] innermathematischen
Themen jegliche Verwendbarkeit im Mathematikunterricht abgesprochen
wird.“%

%0 [Sossinskij] S. S141 ff u.a.
2! [Gerhard]
22 [Gerhard] S. 3
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Ja, die Knotentheorie ist ein innermathematisches Thema, aber sie ist eine
mathematische Theorie, deren Elemente und Grundgedanken ,,vor den Augen“
der Lernenden in Schule und Hochschule entsteht - unter Einbeziehung eigenen
Handels und Denkens. Je nach bisheriger mathematischer Bildung wird Wissen
vernetzt und der Blick auf Mathematik erweitert.
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