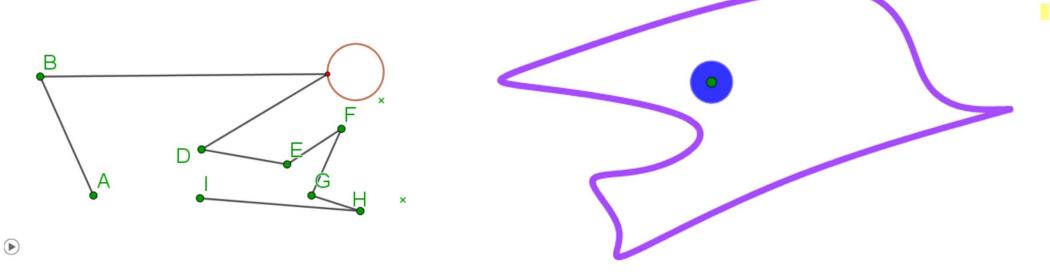
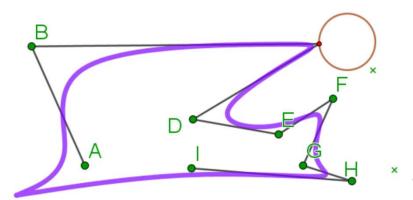
NURBS Grundlage für Animationsfilme

14. Juni 2022 Münster, Behnke-Kolloquium



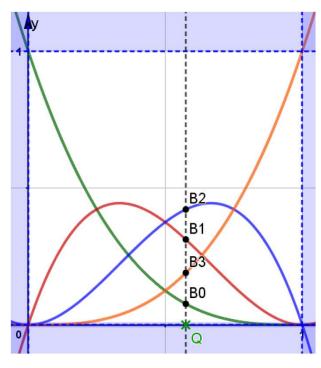


- N Nimm Steuerpunkte
- Und ein Basissystem (z.B. Polynome),
- **R R**ichtige Linearkombination.
- **B B**ald ist "Karl" fertig.
 - **S**o macht "Karl" jede geometrische Bewegung brav mit, z.B. eine Spiegelung.

Bézier-Splines

Die **Bernsteinpolynome**

bilden eine Basis im $\Pi(3)$



$$b0(x) = (1 - x)^3$$
 Wegen $((1-x)+x)^3 = 1$
 $b1(x) = 3x (1 - x)^2$ ist die Summe der
 $b2(x) = 3 (1 - x) x^2$ Ordinaten an jeder

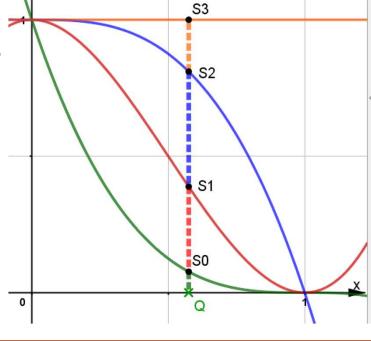
 $b3(x) = x^3$

Wegen $((1-x)+x)^3 = 1$ Stelle 1.

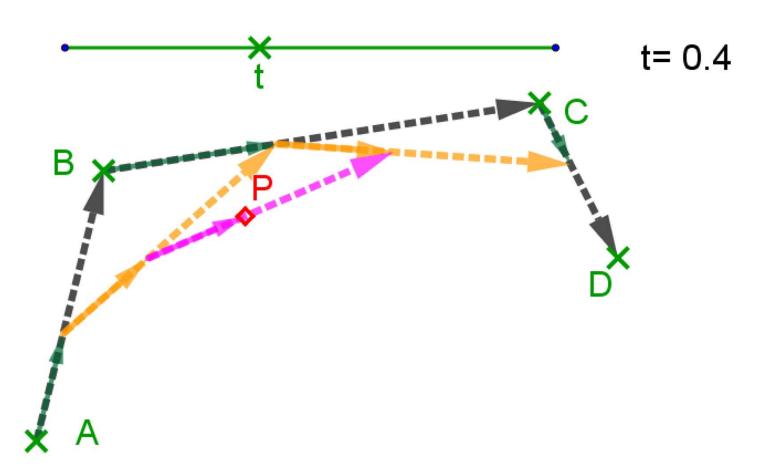
Polynome 3. Grades 3 Nullstellen genau für x=0 und x=1

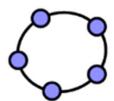
Interaktiv auch zu sehen. Evt.

Es sind sämtliche Möglichkeiten. Herleitung gleich!



Bézier-Spline, eine geometrische Erzeugung





Ein vektorieller Beweis ergibt die Bernsteinpolynome

z.B. Seite 369

Parameterdarstellung der Bézierkurve

$$\vec{P} = (1-t)^3 \vec{A} + 3(1-t)^2 t \vec{B} + 3(1-t)t^2 \vec{C} + t^3 \vec{D}$$

Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, http://www.mathematik-sehen-und-verstehen.de Folie 3

Dadurch ist der Bézier-Spline eine Parameterkurve

Linearkombination der Bernsteinpolynome mit den Steuerpunkten als Koeffizienten

$$x(t)=A_x b_0(t)+B_x b_1(t)+C_x b_2(t)+D_x b_3(t)$$

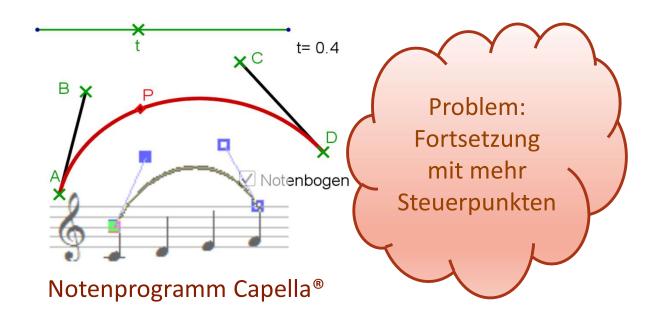
$$y(t)=A_y b_0(t)+B_y b_1(t)+C_y b_2(t)+D_y b_3(t)$$

$$b0(x) = (1 - x)^{3}$$

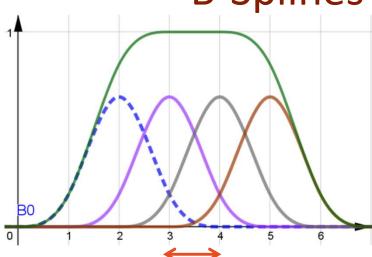
 $b1(x) = 3x (1 - x)^{2}$
 $b2(x) = 3 (1 - x) x^{2}$
 $b3(x) = x^{3}$

In GeoGebra:

Kurve(x(t),y(t),t,0,1)

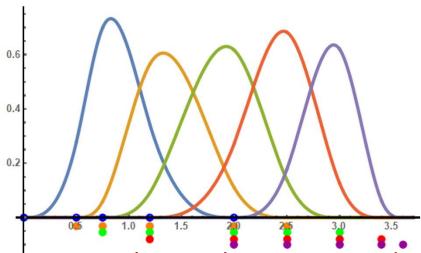


Weiterführende Spline-Konzepte



- Basis aus Polynomen 3.Grades
- Intervallbreite 4
- Nutzbar an den Stellen, an denen 4 •
 Basisfunktionen wirken

und NURBS als ZIEL



Basis aus rationalen Funktionen 3. Grades

Intervallbreiten **nicht notwendig*** gleich

Nutzbar an den Stellen, an denen 4 Basisfunktionen wirken

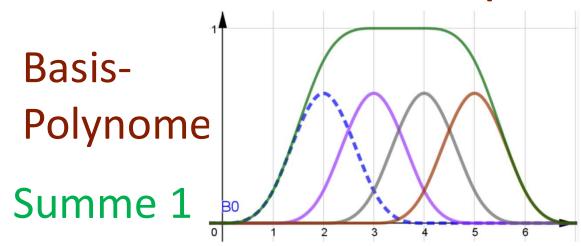
Im Nutzungsbereich ist die Summe 1

Non Uniform Rational B-Splines

Nicht gleichförmige rationale B-Splines

NURBS mit B-Splines sind also spezielle NURBS.

B-Splines



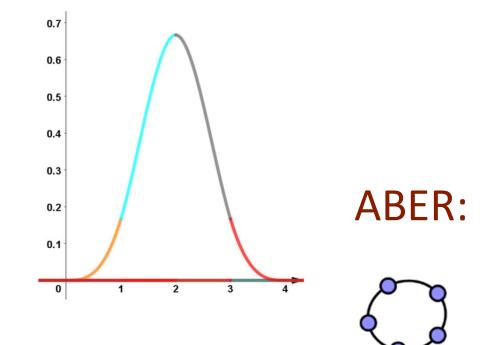
Sind das Polynome 4. Grades mit 2 doppelten Nullstellen?

LEIDER NEIN!

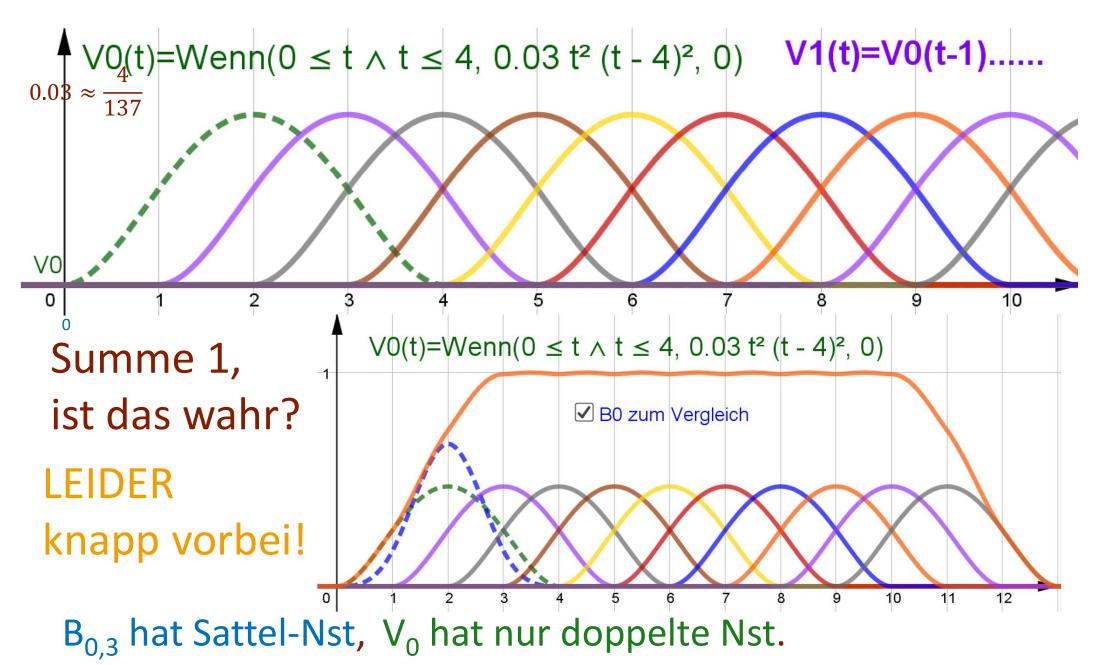
Die wahre Grundfunktion

B_{0.3}(t) -----

besteht aus 4 Teilen



"Didaktische" NURBS mit Polynomen 4. Grades

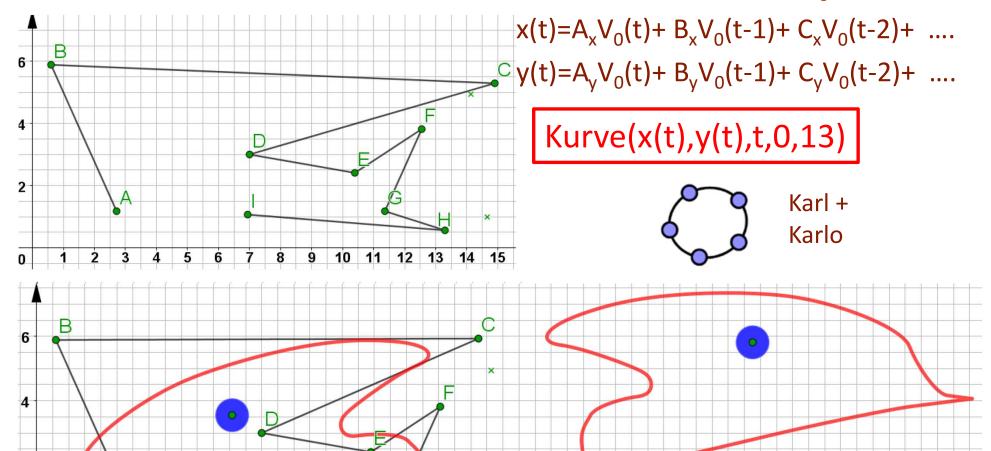


Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, http://www.mathematik-sehen-und-verstehen.de Folie 7

Dennoch:

BSpPoly4

"Didaktische" B-Splines

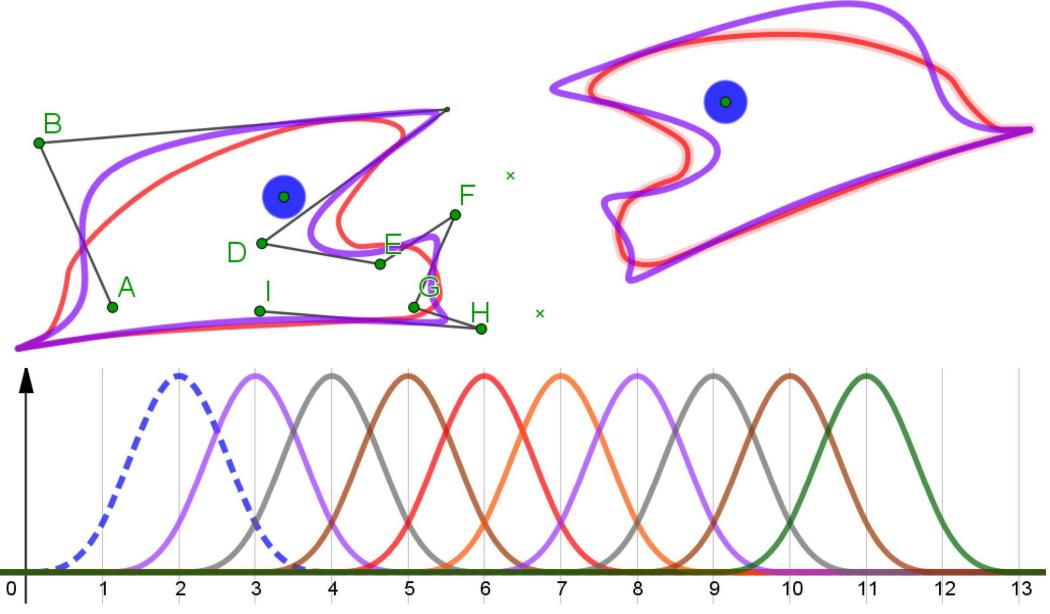


Basispolynome vom Grad 4, aber die Summe war nicht konstant 1..

B-Splines haben gestückelte Basispolynome vom Grad 3 und die Summe ist genau konstant 1.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

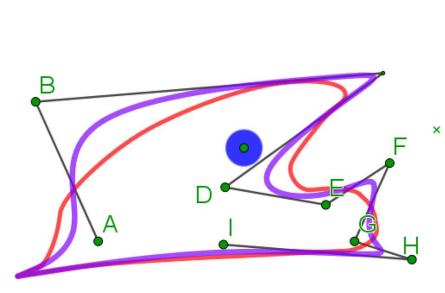
Violett: NURBS mit echten B-Splines



Basis für B-Splines, sie werden gleich erklärt. Stets sind nur p+1=4 Basis-Elemente wirksam.

Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, http://www.mathematik-sehen-und-verstehen.de Folie 9

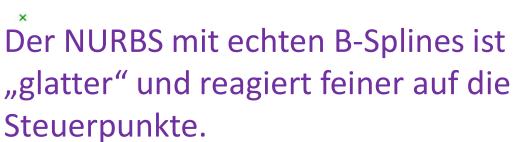
Vergleich der Möglichkeiten für NURBS



Warum eigentlich Summe 1?

Bildet man die Steuerpunkte P_i affin ab, so ist zu wünschen, dass der Spline aus den Bildpunkten P_i auch wirklich mit dem **affinen Bild** des Ur-Splines

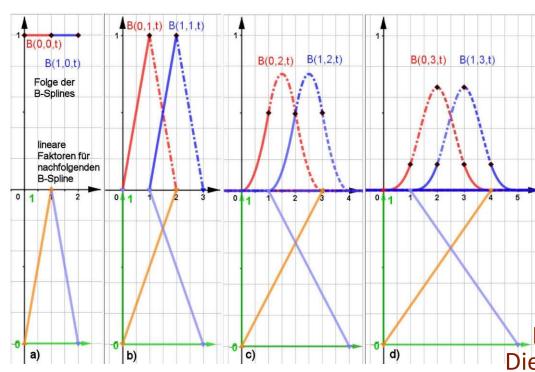
übereinstimmt. Wegen $P \to AP + \vec{b}$ muss dafür aber $\sum_{i=0}^3 B_i \vec{b} = \vec{b}$ gelten. Also muss $\sum_{i=0}^3 B_i = 1$ sein.



Die Einfachversion mit Polynomen 4. Grades ist "didaktische Erfindung" und nicht so edel.

Aber Lernende können sie **selbst** finden. Wie sind die echten B-Splines definiert?

Rekursive Definition der B-Splines



$$B_{0,2}(t) = \frac{t}{2} \cdot B_{0,1}(t) + \frac{3-t}{2} \cdot B_{1,1}(t)$$

$$B_{1,2}(t) = B_{0,2} (t-1)$$

Bestehen aus 3 Parabelstücken

$$B_{0,3}(t) = \frac{t}{3} \cdot B_{0,2}(t) + \frac{4-t}{3} \cdot B_{1,2}(t)$$

 $B_{1,3}(t) = B_{0,3}(t-1)$

Bestehen aus 4 Stücken aus Polynomen 3. Grades

Die gelben Geraden bilden [0,p] auf [0,1] ab. Die blauen Geraden bilden [1,p+1] auf [0,1] ab.

$$B_{0,0}(t)=1$$
 für $0\leq t\leq 1$ und 0 sonst.
Verschiebungsregel $p=$ Polynomgrad

$$B_{i,p}(t) := B_{0,p}(t-i)$$
 für $i \geq 1$ und $p \geq 0$ also $B_{1,0}(t)$ = 1

Multiplikation mit den Geraden darunter, p->p+1

also
$$B_{0,1}(t) = \underline{t} \cdot B_{0,0}(t) + (2-t) \cdot \underline{B_{1,0}(t)},$$

 $B_{1,1}(t) = B_{0,1}(t-1)$

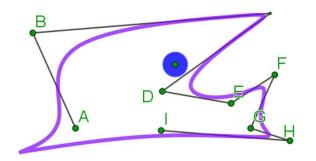
B-Splines 3. Grades reichen in der Praxis.

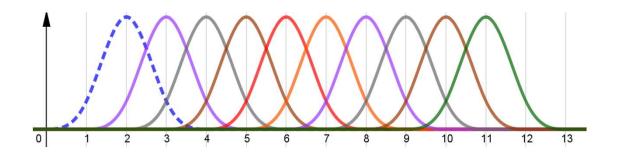
Zweifache Differenzierbarkeit reicht.

Mit der Verschiebungsregel erzeugt man für n Steuerpunkte (mindestens) n solche "Hügel".

NURBS mit B-Splines vom Grad 3 sind hier mit "Knoten" im Abstand 1 gezeigt

In jedem Intervall der Breite 1 bilden 4 Hügel eine Basis.

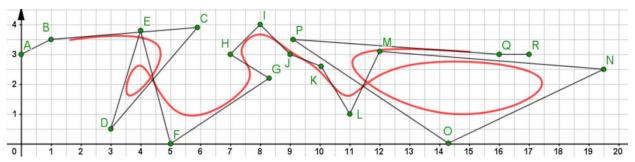




"Karl" ist die Parameterkurve

$$x(t) = A_x B_{0,3}(t) + B_x B_{1,3}(t) + C_x B_{2,3}(t) + D_x B_{3,3}(t) + E_x B_{4,3}(t) + F_x B_{5,3}(t) + G_x B_{6,3}(t) + H_x B_{7,3}(t) + I_x B_{8,3}(t)$$

$$y(t) = A_y B_{0,3}(t) + B_y B_{1,3}(t) + C_y B_{2,3}(t) + D_y B_{3,3}(t) + E_y B_{4,3}(t) + F_y B_{5,3}(t) + G_y B_{6,3}(t) + H_y B_{7,3}(t) + I_y B_{8,3}(t)$$



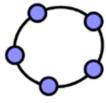
Seite 379

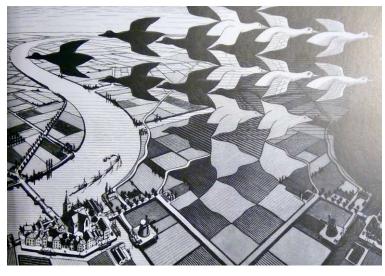
Kreativen Erfindungen sind Tor und Tür geöffnet!

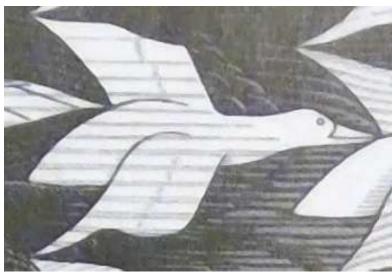
Ein Beispiel, das nicht im Buch steht, zeige ich nun:

Escher-Metamorphose

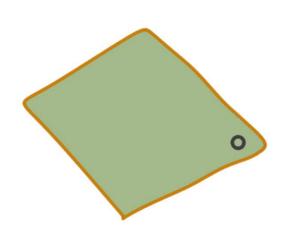
mit B-Splines-NURBS mit vom Grad 3

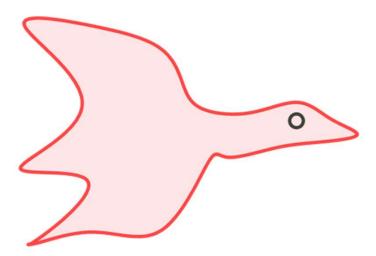






Mauritz C. Escher: Tag und Nacht





Idee aus einem biographischen Film, bei dem Tiere aus den Bildern krabbeln.

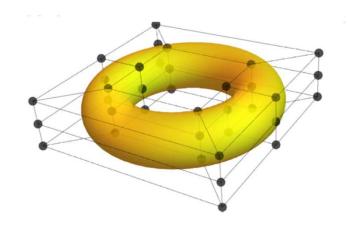
NURBS, Non Uniform Rational B-Splines

$$R_i = rac{w_i b_i}{\sum_{j=0}^3 w_j b_j} \; ext{für } i = 0..3 \; ext{Die } b_i \; ext{sind B-Splines oder} \ ext{Béziersplines}.$$



- Die w_i reelle **Gewichte**.
- Der Nenner garantiert "Summe 1".
- Die Intervallgrenzen werden **Knoten** genannt.
- Eine **Knotenliste** nennt die Parameter der Knoten.
- Es kann auch **mehrfache Knoten** geben.
- Die Abstände der Knoten sind beliebig.
- Der Polynomgrad p kann höher als 3 sein

Mit NURBS lässt sich jede stückweise rational parametrisierbare Kurve darstellen.

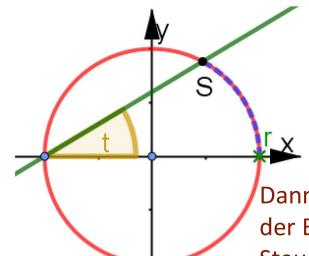


NURBS 3D sind heute für frei gestaltete aber auch "exakte" Formen weit verbreitet.

NURBS für exakte geometrische Objekte

Der Kreis als NURBS

$$R_i = rac{w_i b_i}{\Sigma_{j=0}^3 w_j b_j} ext{ für } i = 0..3$$



Eine **rationale Parametrisierung** kann man evt. finden, indem man eine parametrisierte Gerade durch einen bekannten Punkt mit einer Kurve zum Schnitt bringt.

$$S=(rac{r(1-t^2)}{1+t^2},rac{2rt}{1+t^2})$$

Dann ist die Kurve als Linearkombination

 $C = \sum_{i=0}^{P} A_i R_i$

der Basisfunktionen R_i darstellbar. Die Gewichte w_i und die Steuerpunkte A_i sind passend zu bestimmen.

Für den Nenner ergibt sich mit Béziersplines die folgende Bedingung:

$$w_0(1-t)^3 + w_13(1-t)^2t + w_23(1-t)t^2 + w_3t^3 = 1 + t^2$$

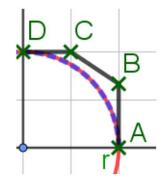
Koeffizientenvergleich liefert die Gewichte: $(w_0, w_1, w_2, w_3) = (1, 1, 4/3, 2)$

Der Nenner der $oldsymbol{R_i}$ ist damit gesichert. Die Zähler müssen erfüllen:

$$A_x(1-t)^3 + B_x 3(1-t)^2 t + C_x 4(1-t)t^2 + D_x 2t^3 = r(1-t^2)$$

$$A_y(1-t)^3 + B_y 3(1-t)^2 t + C_y 4(1-t)t^2 + D_y 2t^3 = 2rt$$

Damit werden die Steuerpunkte: A=(r,0), B=(r,2/3r), C=(r/2,r), D=(0,r)

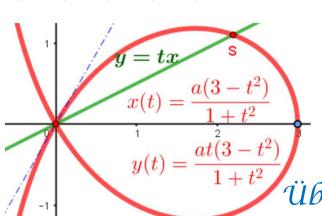




Exakte Geometrie mit NURBS ist also möglich.

S. 380f Die obige Herleitung ist vollständiger.

Was aber nicht im Buch steht, zeige ich nun:



Die
$$\mathsf{Trisektrix}$$
 hat die implizite Gleichung $(a+x)y^2=(3a-x)x^2$

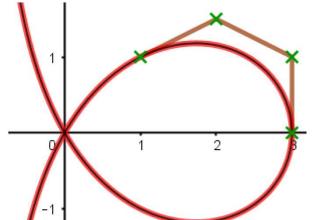
Kurven erkunden und verstehen

Mit einer Geraden durch den singulären Punkt findet man eine rationale **Parametrisierung** (s. links) 3. Grades.

Überraschung

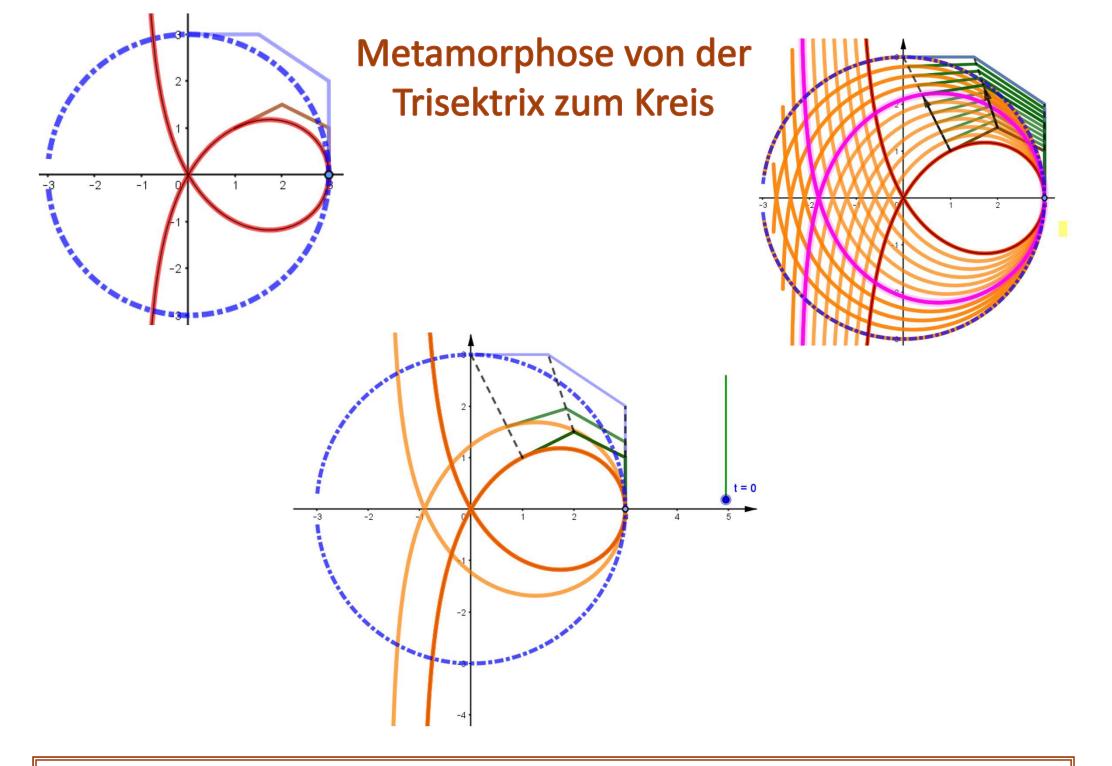
Sie hat denselben Nenner und damit auch dieselben Basispolynome, die wir beim Kreis berechnet haben.

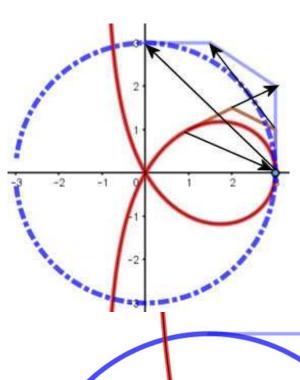
$$w_0=1,\,w_1=1,\,w_2=\frac{4}{3}\,,\,w_3=2\quad R_0(t)=\frac{{(1-t)}^3}{t^2+1},\,R_1(t)=\frac{{3(1-t)}^2t}{t^2+1},\,R_2(t)=\frac{{4(1-t)}t^2}{t^2+1},\,R_3(t)=\frac{2t^3}{t^2+1}$$



Auf die oben gezeigte Art ergeben sich folgende Steuerpunkte, dabei ist 3α die Schlaufenbreite:

$$A = (3a,0), B = (3a,a), C = \left(2a, rac{3a}{2}
ight), D = (a,a)$$

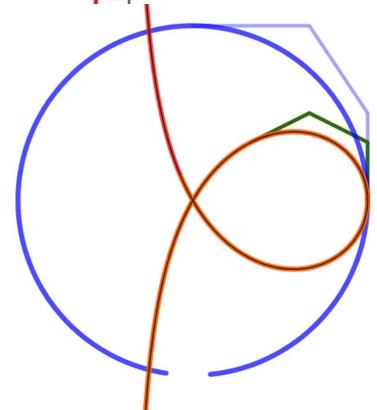




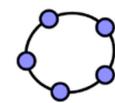
Metamorphose von der Trisektrix zum Kreis, der nun negativ durchlaufen wird

$$x(t) = \frac{2rt}{1+t^2},$$
$$y(t) = \frac{r(1-t^2)}{1+t^2}$$

So steht es im Buch. Durchlauf negativ



Überraschende Volte



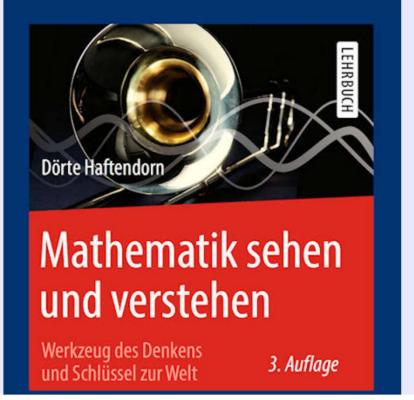
Lesen Sie ausführlicher in den Büchern

Mathematik sehen und verstehen

Höhere Mathematik sehen und verstehen

Werstehen

Wilder Water Wilder und verstehen



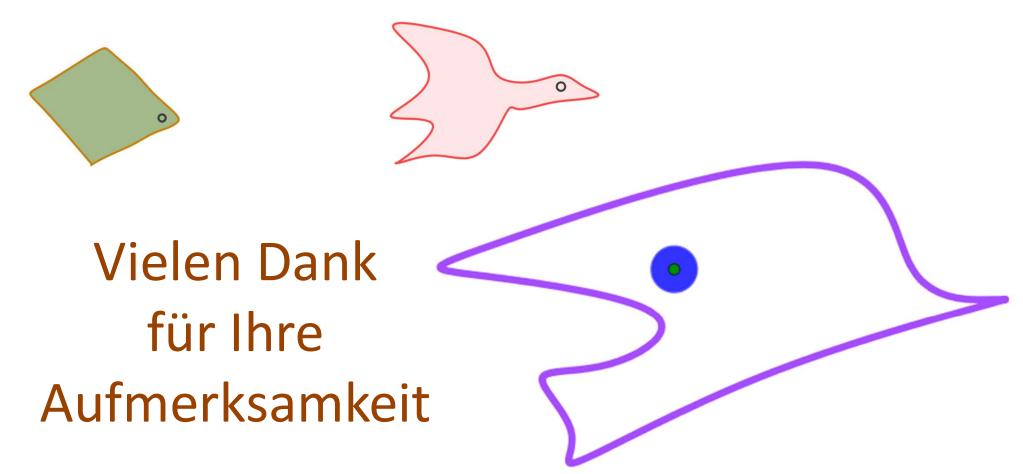
Numerik, 9.2.4, S 248

Splines+NURBS in 5.3 bis 5.4

Die Präsentation und alle gezeigten GeoGebra-Dateien finden Sie im Bereich Vorträge

NURBS Grundlage für Animationsfilme

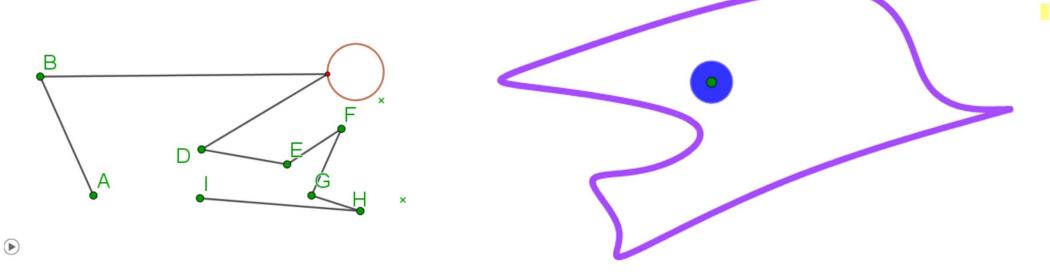
14. Juni 2022 Münster, Behnke-Kolloquium

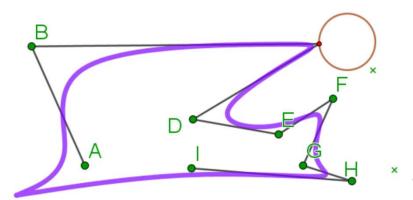


Die Präsentation und alle gezeigten GeoGebra-Dateien finden Sie im Bereich Vorträge

NURBS Grundlage für Animationsfilme

14. Juni 2022 Münster, Behnke-Kolloquium



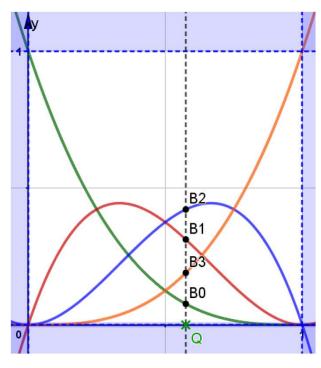


- N Nimm Steuerpunkte
- Und ein Basissystem (z.B. Polynome),
- **R R**ichtige Linearkombination.
- **B B**ald ist "Karl" fertig.
 - **S**o macht "Karl" jede geometrische Bewegung brav mit, z.B. eine Spiegelung.

Bézier-Splines

Die **Bernsteinpolynome**

bilden eine Basis im $\Pi(3)$



$$b0(x) = (1 - x)^3$$
 Wegen $((1-x)+x)^3 = 1$
 $b1(x) = 3x (1 - x)^2$ ist die Summe der
 $b2(x) = 3 (1 - x) x^2$ Ordinaten an jeder

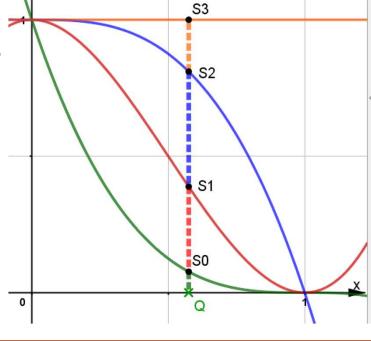
 $b3(x) = x^3$

Wegen $((1-x)+x)^3 = 1$ Stelle 1.

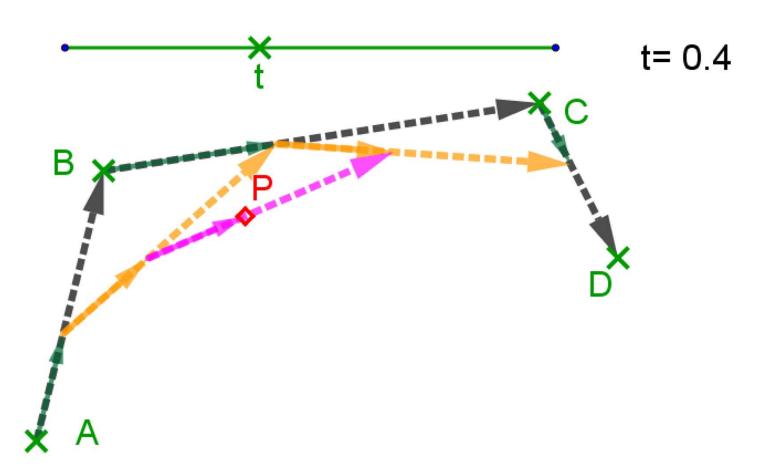
Polynome 3. Grades 3 Nullstellen genau für x=0 und x=1

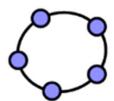
Interaktiv auch zu sehen. Evt.

Es sind sämtliche Möglichkeiten. Herleitung gleich!



Bézier-Spline, eine geometrische Erzeugung





Ein vektorieller Beweis ergibt die Bernsteinpolynome

z.B. Seite 369

Parameterdarstellung der Bézierkurve

$$\vec{P} = (1-t)^3 \vec{A} + 3(1-t)^2 t \vec{B} + 3(1-t)t^2 \vec{C} + t^3 \vec{D}$$

Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, http://www.mathematik-sehen-und-verstehen.de Folie 3

Dadurch ist der Bézier-Spline eine Parameterkurve

Linearkombination der Bernsteinpolynome mit den Steuerpunkten als Koeffizienten

$$x(t)=A_x b_0(t)+B_x b_1(t)+C_x b_2(t)+D_x b_3(t)$$

$$y(t)=A_y b_0(t)+B_y b_1(t)+C_y b_2(t)+D_y b_3(t)$$

$$b0(x) = (1 - x)^3$$

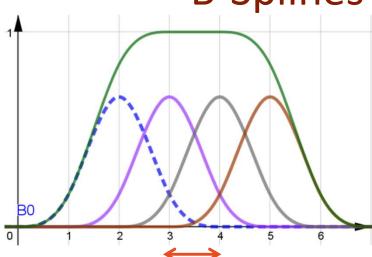
 $b1(x) = 3x (1 - x)^2$
 $b2(x) = 3 (1 - x) x^2$
 $b3(x) = x^3$

In GeoGebra:

Kurve(x(t),y(t),t,0,1)

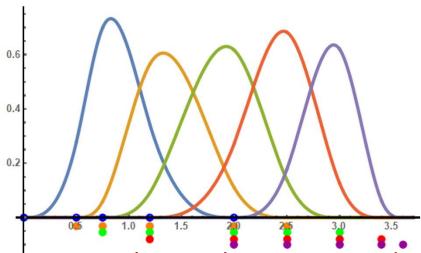


Weiterführende Spline-Konzepte



- Basis aus Polynomen 3.Grades
- Intervallbreite 4
- Nutzbar an den Stellen, an denen 4 •
 Basisfunktionen wirken

und NURBS als ZIEL



Basis aus rationalen Funktionen 3. Grades

Intervallbreiten **nicht notwendig*** gleich

Nutzbar an den Stellen, an denen 4 Basisfunktionen wirken

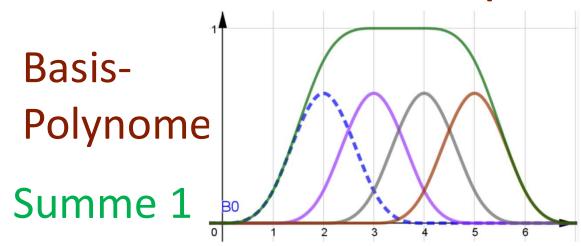
Im Nutzungsbereich ist die Summe 1

Non Uniform Rational B-Splines

Nicht gleichförmige rationale B-Splines

NURBS mit B-Splines sind also spezielle NURBS.

B-Splines



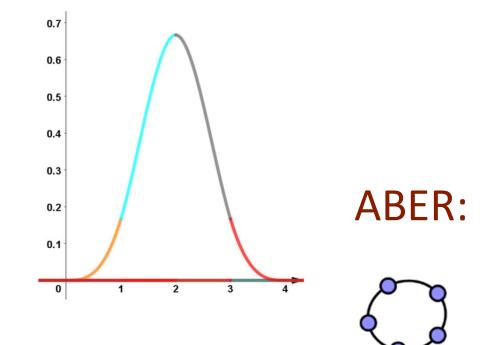
Sind das Polynome 4. Grades mit 2 doppelten Nullstellen?

LEIDER NEIN!

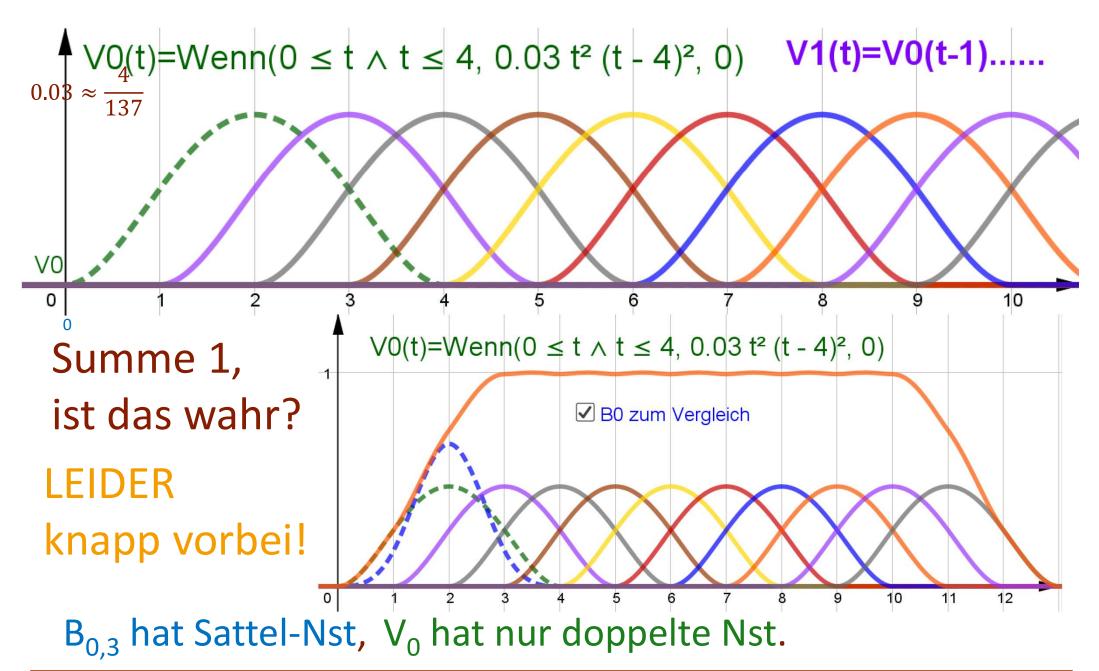
Die wahre Grundfunktion

B_{0.3}(t) -----

besteht aus 4 Teilen



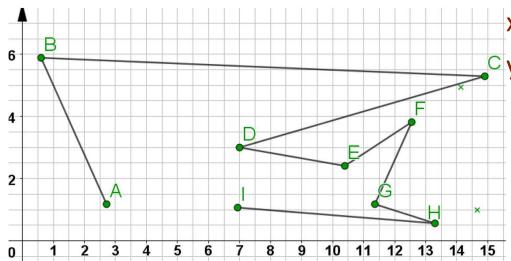
"Didaktische" NURBS mit Polynomen 4. Grades



Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, http://www.mathematik-sehen-und-verstehen.de Folie 7

Dennoch:

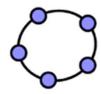
"Didaktische" B-Splines



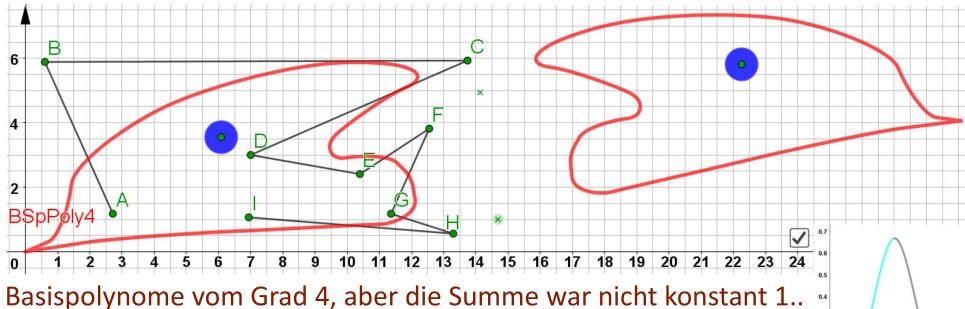
 $x(t)=A_xV_0(t)+B_xV_0(t-1)+C_xV_0(t-2)+...$

 $V_0(t) = A_y V_0(t) + B_y V_0(t-1) + C_y V_0(t-2) + \dots$

Kurve(x(t),y(t),t,0,13)



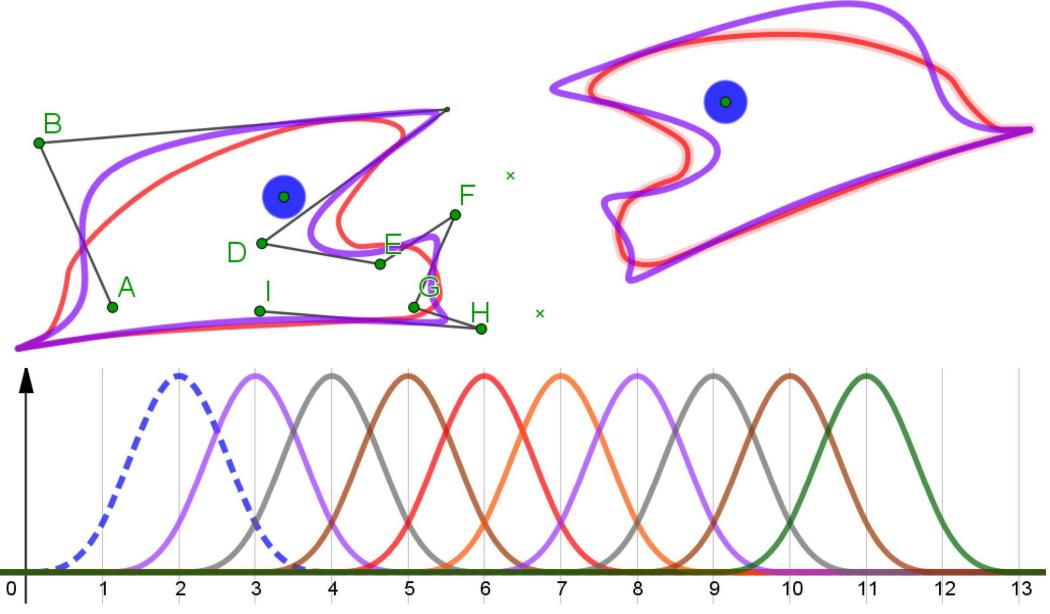
Karl + Karlo



B-Splines haben gestückelte Basispolynome vom Grad 3

und die Summe ist genau konstant 1.

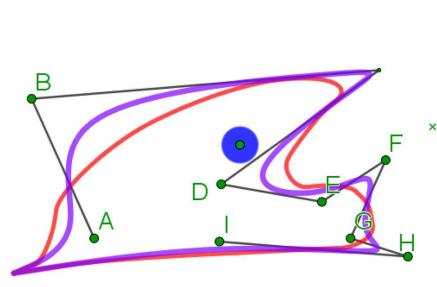
Violett: NURBS mit echten B-Splines



Basis für B-Splines, sie werden gleich erklärt. Stets sind nur p+1=4 Basis-Elemente wirksam.

Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, http://www.mathematik-sehen-und-verstehen.de Folie 9

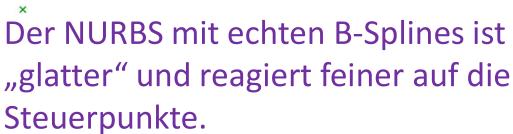
Vergleich der Möglichkeiten für NURBS



Warum eigentlich Summe 1?

Bildet man die Steuerpunkte P_i affin ab, so ist zu wünschen, dass der Spline aus den Bildpunkten P_i' auch wirklich mit dem **affinen Bild** des Ur-Splines

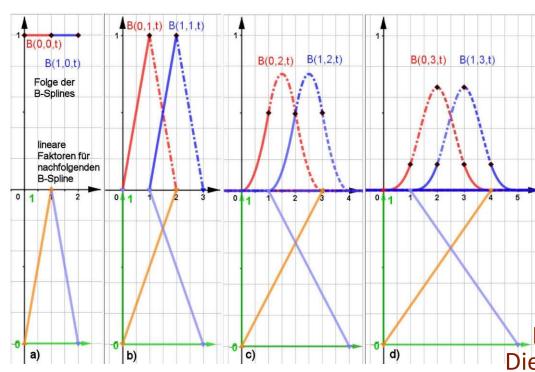
übereinstimmt. Wegen $P \to AP + \vec{b}$ muss dafür aber $\sum_{i=0}^3 B_i \vec{b} = \vec{b}$ gelten. Also muss $\sum_{i=0}^3 B_i = 1$ sein.



Die Einfachversion mit Polynomen 4. Grades ist "didaktische Erfindung" und nicht so edel.

Aber Lernende können sie **selbst** finden. Wie sind die echten B-Splines definiert?

Rekursive Definition der B-Splines



$$B_{0,2}(t) = \frac{t}{2} \cdot B_{0,1}(t) + \frac{3-t}{2} \cdot B_{1,1}(t)$$

$$B_{1,2}(t) = B_{0,2} (t-1)$$

Bestehen aus 3 Parabelstücken

$$B_{0,3}(t) = \frac{t}{3} \cdot B_{0,2}(t) + \frac{4-t}{3} \cdot B_{1,2}(t)$$

 $B_{1,3}(t) = B_{0,3}(t-1)$

Bestehen aus 4 Stücken aus Polynomen 3. Grades

Die gelben Geraden bilden [0,p] auf [0,1] ab. Die blauen Geraden bilden [1,p+1] auf [0,1] ab.

$$B_{0,0}(t)=1$$
 für $0\leq t\leq 1$ und 0 sonst.
Verschiebungsregel $p=$ Polynomgrad

$$B_{i,p}(t) := B_{0,p}(t-i)$$
 für $i \geq 1$ und $p \geq 0$ also $B_{1,0}(t)$ = 1

Multiplikation mit den Geraden darunter, p->p+1

also
$$B_{0,1}(t) = \underline{t} \cdot B_{0,0}(t) + (2-t) \cdot \underline{B_{1,0}(t)},$$

 $B_{1,1}(t) = B_{0,1}(t-1)$

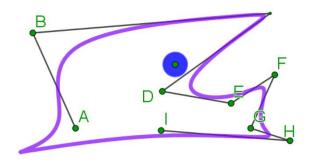
B-Splines 3. Grades reichen in der Praxis.

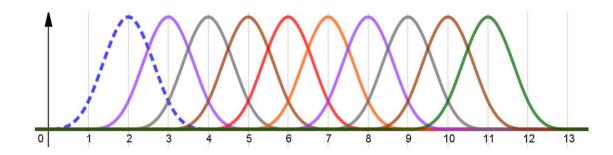
Zweifache Differenzierbarkeit reicht.

Mit der Verschiebungsregel erzeugt man für n Steuerpunkte (mindestens) n solche "Hügel".

NURBS mit B-Splines vom Grad 3 sind hier mit "Knoten" im Abstand 1 gezeigt

In jedem Intervall der Breite 1 bilden 4 Hügel eine Basis.

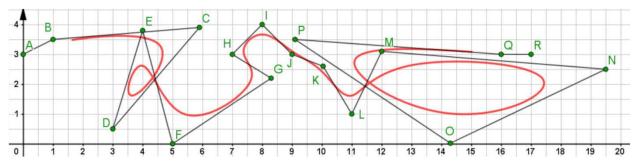




"Karl" ist die Parameterkurve

$$x(t) = A_x B_{0,3}(t) + B_x B_{1,3}(t) + C_x B_{2,3}(t) + D_x B_{3,3}(t) + E_x B_{4,3}(t) + F_x B_{5,3}(t) + G_x B_{6,3}(t) + H_x B_{7,3}(t) + I_x B_{8,3}(t)$$

$$y(t) = A_y B_{0,3}(t) + B_y B_{1,3}(t) + C_y B_{2,3}(t) + D_y B_{3,3}(t) + E_y B_{4,3}(t) + F_y B_{5,3}(t) + G_y B_{6,3}(t) + H_y B_{7,3}(t) + I_y B_{8,3}(t)$$



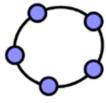
Seite 379

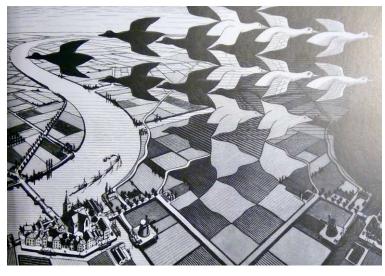
Kreativen Erfindungen sind Tor und Tür geöffnet!

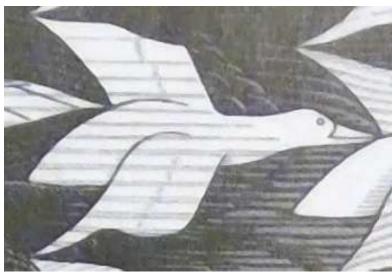
Ein Beispiel, das nicht im Buch steht, zeige ich nun:

Escher-Metamorphose

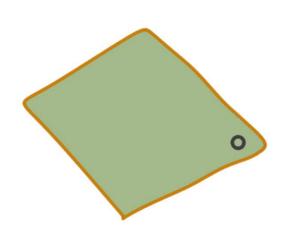
mit B-Splines-NURBS mit vom Grad 3

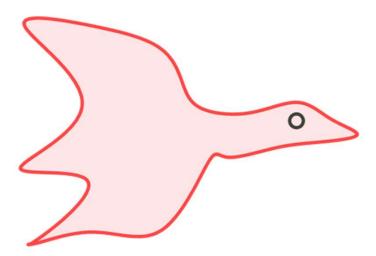






Mauritz C. Escher: Tag und Nacht





Idee aus einem biographischen Film, bei dem Tiere aus den Bildern krabbeln.

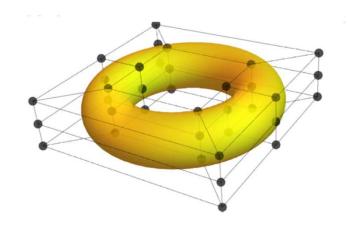
NURBS, Non Uniform Rational B-Splines

$$R_i = rac{w_i b_i}{\sum_{j=0}^3 w_j b_j} \; ext{für } i = 0..3 \; ext{Die } b_i \; ext{sind B-Splines oder} \ ext{Béziersplines}.$$



- Die w_i reelle **Gewichte**.
- Der Nenner garantiert "Summe 1".
- Die Intervallgrenzen werden **Knoten** genannt.
- Eine **Knotenliste** nennt die Parameter der Knoten.
- Es kann auch **mehrfache Knoten** geben.
- Die Abstände der Knoten sind beliebig.
- Der Polynomgrad p kann höher als 3 sein

Mit NURBS lässt sich jede stückweise rational parametrisierbare Kurve darstellen.

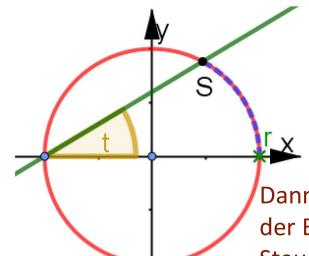


NURBS 3D sind heute für frei gestaltete aber auch "exakte" Formen weit verbreitet.

NURBS für exakte geometrische Objekte

Der Kreis als NURBS

$$R_i = rac{w_i b_i}{\Sigma_{j=0}^3 w_j b_j} ext{ für } i = 0..3$$



Eine **rationale Parametrisierung** kann man evt. finden, indem man eine parametrisierte Gerade durch einen bekannten Punkt mit einer Kurve zum Schnitt bringt.

$$S=(rac{r(1-t^2)}{1+t^2},rac{2rt}{1+t^2})$$

Dann ist die Kurve als Linearkombination

 $C = \sum_{i=0}^{P} A_i R_i$

der Basisfunktionen R_i darstellbar. Die Gewichte w_i und die Steuerpunkte A_i sind passend zu bestimmen.

Für den Nenner ergibt sich mit Béziersplines die folgende Bedingung:

$$w_0(1-t)^3 + w_13(1-t)^2t + w_23(1-t)t^2 + w_3t^3 = 1 + t^2$$

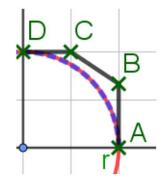
Koeffizientenvergleich liefert die Gewichte: $(w_0, w_1, w_2, w_3) = (1, 1, 4/3, 2)$

Der Nenner der $oldsymbol{R_i}$ ist damit gesichert. Die Zähler müssen erfüllen:

$$A_x(1-t)^3 + B_x 3(1-t)^2 t + C_x 4(1-t)t^2 + D_x 2t^3 = r(1-t^2)$$

$$A_y(1-t)^3 + B_y 3(1-t)^2 t + C_y 4(1-t)t^2 + D_y 2t^3 = 2rt$$

Damit werden die Steuerpunkte: A=(r,0), B=(r,2/3r), C=(r/2,r), D=(0,r)

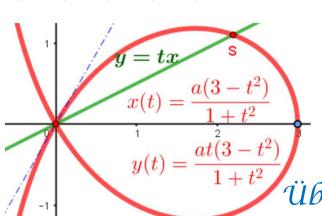




Exakte Geometrie mit NURBS ist also möglich.

S. 380f Die obige Herleitung ist vollständiger.

Was aber nicht im Buch steht, zeige ich nun:



Die
$$\mathsf{Trisektrix}$$
 hat die implizite Gleichung $(a+x)y^2=(3a-x)x^2$

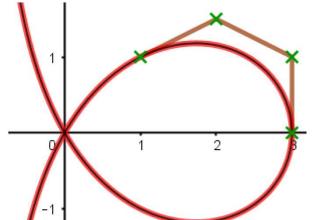
Kurven erkunden und verstehen

Mit einer Geraden durch den singulären Punkt findet man eine rationale **Parametrisierung** (s. links) 3. Grades.

Überraschung

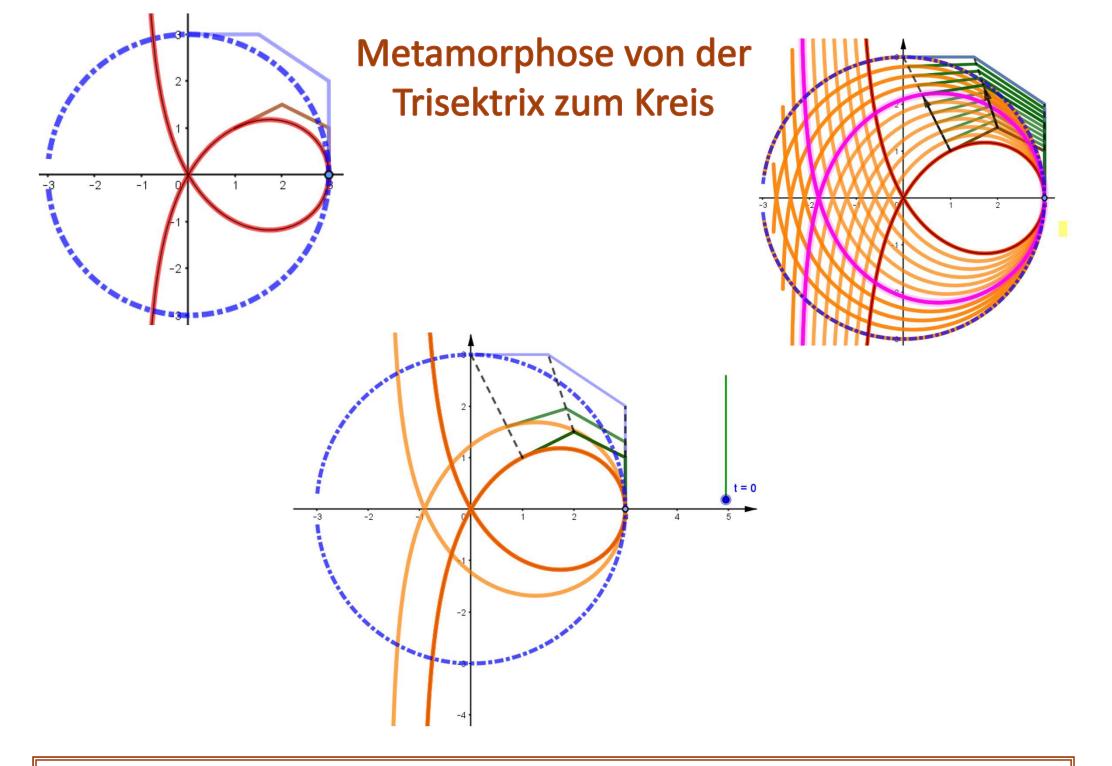
Sie hat denselben Nenner und damit auch dieselben Basispolynome, die wir beim Kreis berechnet haben.

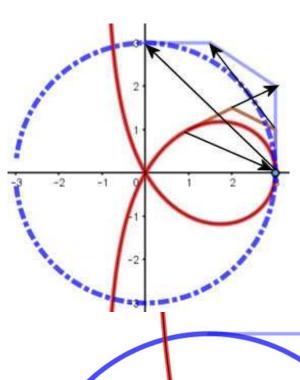
$$w_0=1,\,w_1=1,\,w_2=\frac{4}{3}\,,\,w_3=2\quad R_0(t)=\frac{{(1-t)}^3}{t^2+1},\,R_1(t)=\frac{{3(1-t)}^2t}{t^2+1},\,R_2(t)=\frac{{4(1-t)}t^2}{t^2+1},\,R_3(t)=\frac{2t^3}{t^2+1}$$



Auf die oben gezeigte Art ergeben sich folgende Steuerpunkte, dabei ist 3α die Schlaufenbreite:

$$A = (3a,0), B = (3a,a), C = \left(2a, rac{3a}{2}
ight), D = (a,a)$$

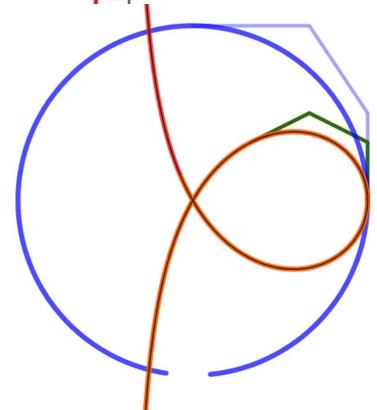




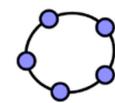
Metamorphose von der Trisektrix zum Kreis, der nun negativ durchlaufen wird

$$x(t) = \frac{2rt}{1+t^2},$$
$$y(t) = \frac{r(1-t^2)}{1+t^2}$$

So steht es im Buch. Durchlauf negativ



Überraschende Volte



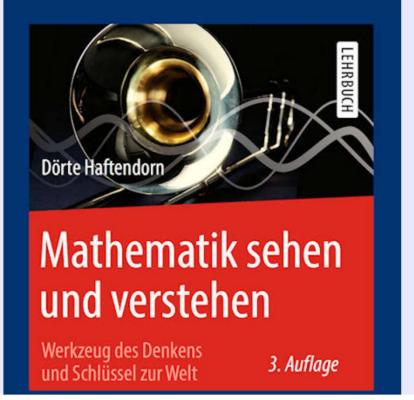
Lesen Sie ausführlicher in den Büchern

Mathematik sehen und verstehen

Höhere Mathematik sehen und verstehen

Werstehen

Wilder Water Wilder und verstehen



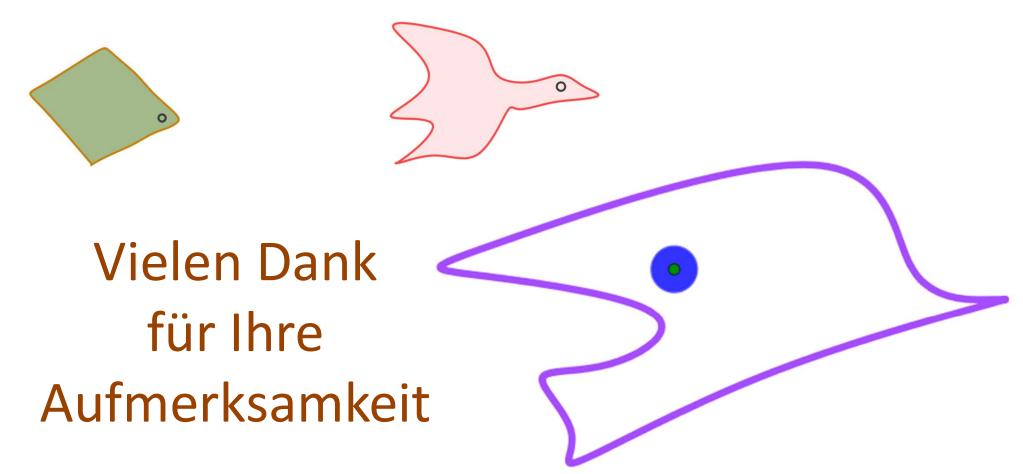
Numerik, 9.2.4, S 248

Splines+NURBS in 5.3 bis 5.4

Die Präsentation und alle gezeigten GeoGebra-Dateien finden Sie im Bereich Vorträge

NURBS Grundlage für Animationsfilme

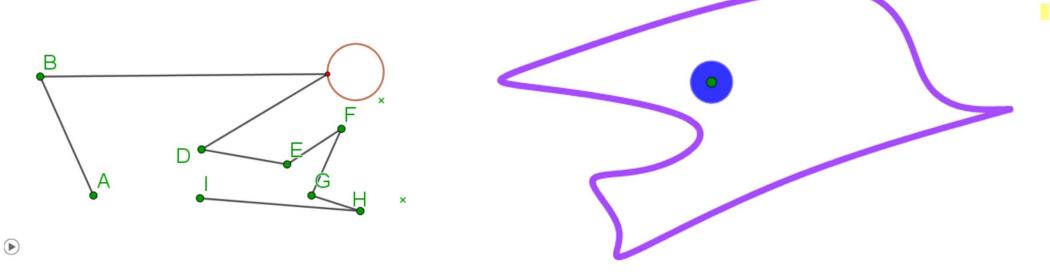
14. Juni 2022 Münster, Behnke-Kolloquium

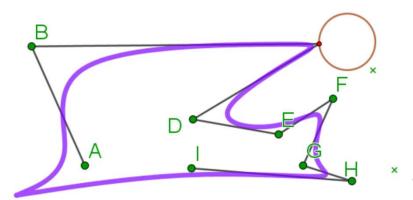


Die Präsentation und alle gezeigten GeoGebra-Dateien finden Sie im Bereich Vorträge

NURBS Grundlage für Animationsfilme

14. Juni 2022 Münster, Behnke-Kolloquium



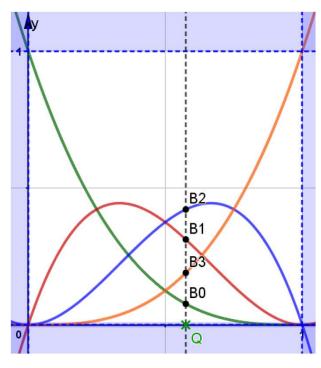


- N Nimm Steuerpunkte
- Und ein Basissystem (z.B. Polynome),
- **R R**ichtige Linearkombination.
- **B B**ald ist "Karl" fertig.
 - **S**o macht "Karl" jede geometrische Bewegung brav mit, z.B. eine Spiegelung.

Bézier-Splines

Die **Bernsteinpolynome**

bilden eine Basis im $\Pi(3)$



$$b0(x) = (1 - x)^3$$
 Wegen $((1-x)+x)^3 = 1$
 $b1(x) = 3x (1 - x)^2$ ist die Summe der
 $b2(x) = 3 (1 - x) x^2$ Ordinaten an jeder

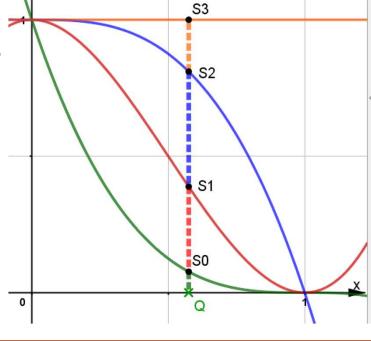
 $b3(x) = x^3$

Wegen $((1-x)+x)^3 = 1$ Stelle 1.

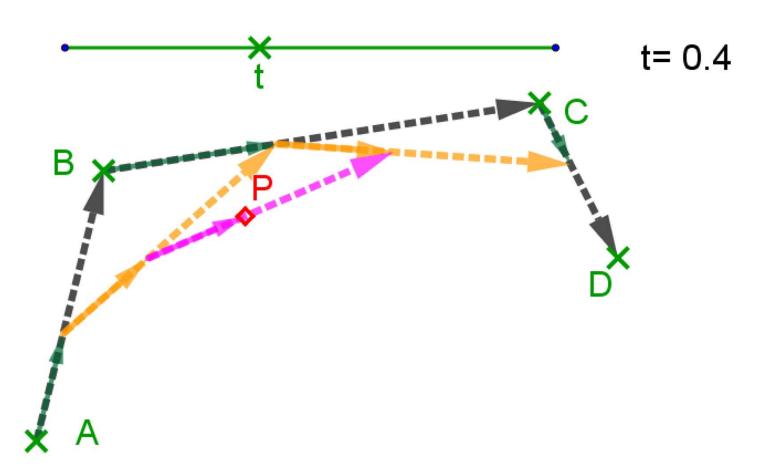
Polynome 3. Grades 3 Nullstellen genau für x=0 und x=1

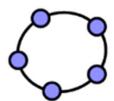
Interaktiv auch zu sehen. Evt.

Es sind sämtliche Möglichkeiten. Herleitung gleich!



Bézier-Spline, eine geometrische Erzeugung





Ein vektorieller Beweis ergibt die Bernsteinpolynome

z.B. Seite 369

Parameterdarstellung der Bézierkurve

$$\vec{P} = (1-t)^3 \vec{A} + 3(1-t)^2 t \vec{B} + 3(1-t)t^2 \vec{C} + t^3 \vec{D}$$

Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, http://www.mathematik-sehen-und-verstehen.de Folie 3

Dadurch ist der Bézier-Spline eine Parameterkurve

Linearkombination der Bernsteinpolynome mit den Steuerpunkten als Koeffizienten

$$x(t)=A_x b_0(t)+B_x b_1(t)+C_x b_2(t)+D_x b_3(t)$$

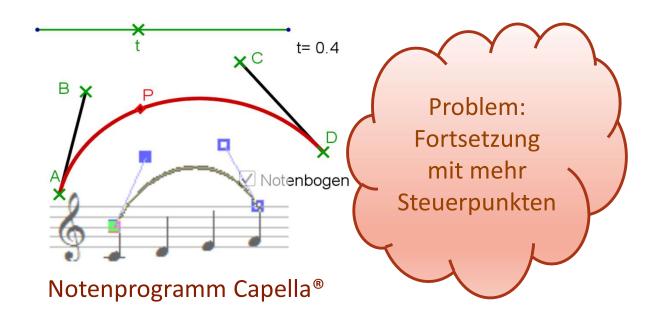
$$y(t)=A_y b_0(t)+B_y b_1(t)+C_y b_2(t)+D_y b_3(t)$$

$$b0(x) = (1 - x)^{3}$$

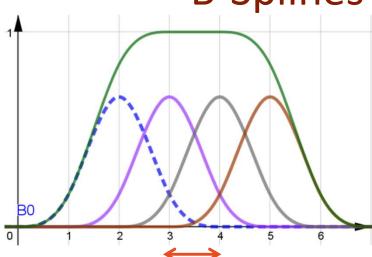
 $b1(x) = 3x (1 - x)^{2}$
 $b2(x) = 3 (1 - x) x^{2}$
 $b3(x) = x^{3}$

In GeoGebra:

Kurve(x(t),y(t),t,0,1)

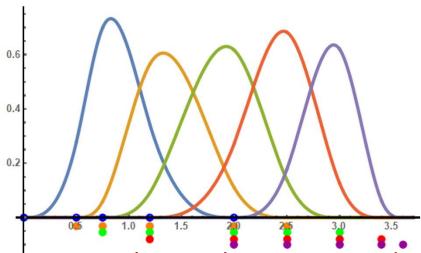


Weiterführende Spline-Konzepte



- Basis aus Polynomen 3.Grades
- Intervallbreite 4
- Nutzbar an den Stellen, an denen 4 •
 Basisfunktionen wirken

und NURBS als ZIEL



Basis aus rationalen Funktionen 3. Grades

Intervallbreiten **nicht notwendig*** gleich

Nutzbar an den Stellen, an denen 4 Basisfunktionen wirken

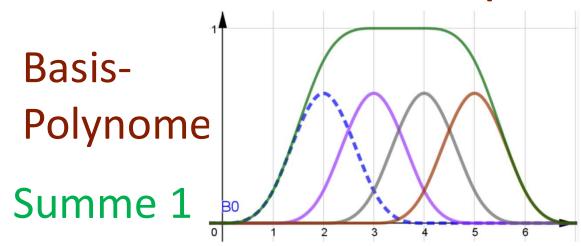
Im Nutzungsbereich ist die Summe 1

Non Uniform Rational B-Splines

Nicht gleichförmige rationale B-Splines

NURBS mit B-Splines sind also spezielle NURBS.

B-Splines



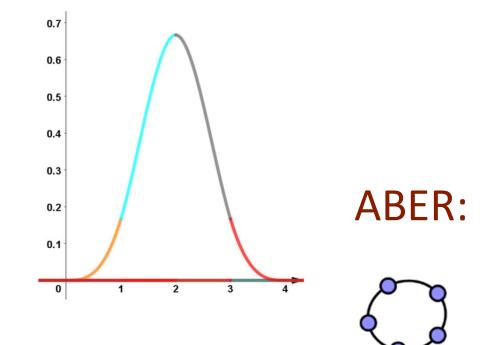
Sind das Polynome 4. Grades mit 2 doppelten Nullstellen?

LEIDER NEIN!

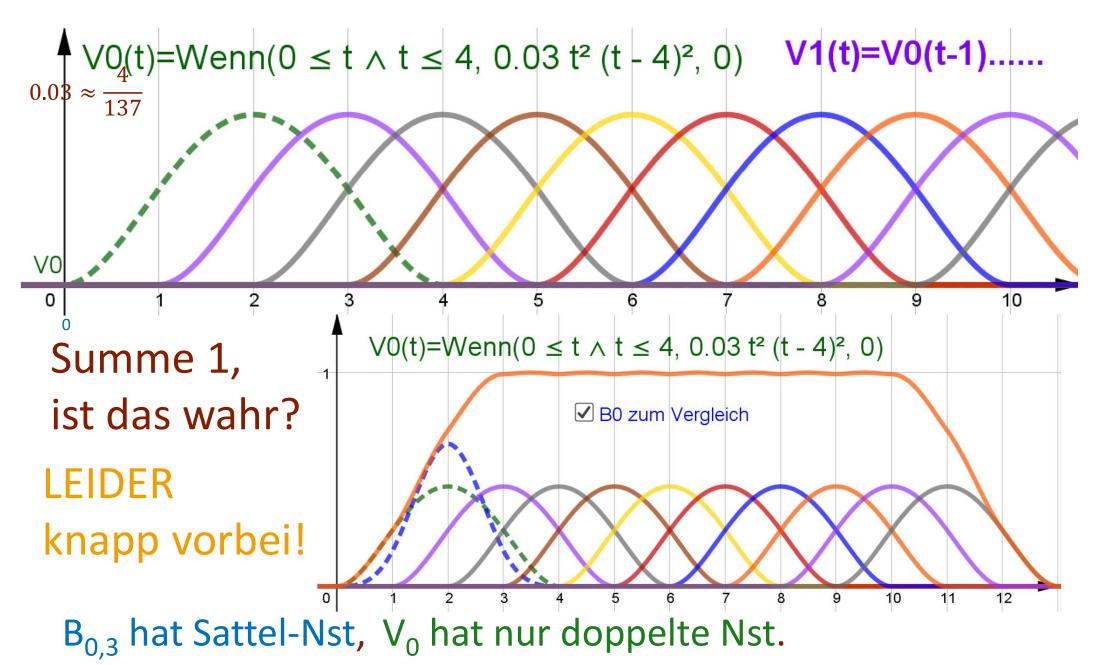
Die wahre Grundfunktion

B_{0.3}(t) -----

besteht aus 4 Teilen



"Didaktische" NURBS mit Polynomen 4. Grades

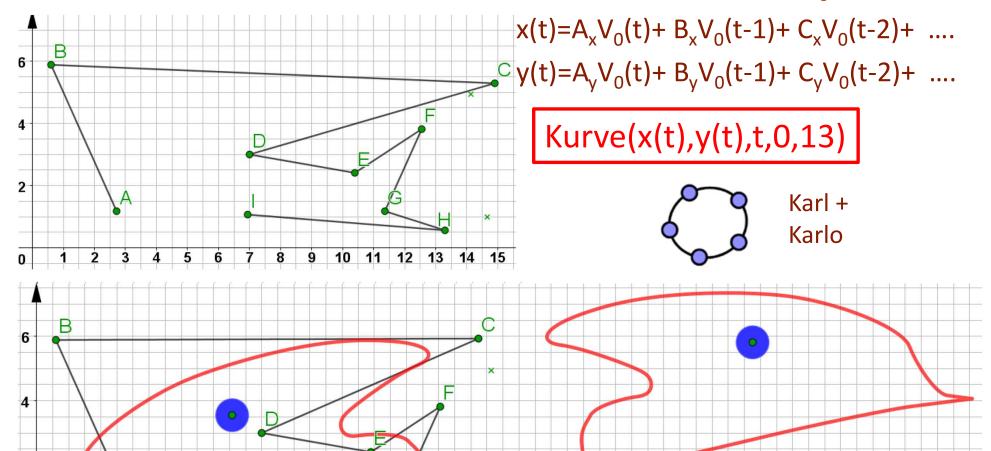


Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, http://www.mathematik-sehen-und-verstehen.de Folie 7

Dennoch:

BSpPoly4

"Didaktische" B-Splines

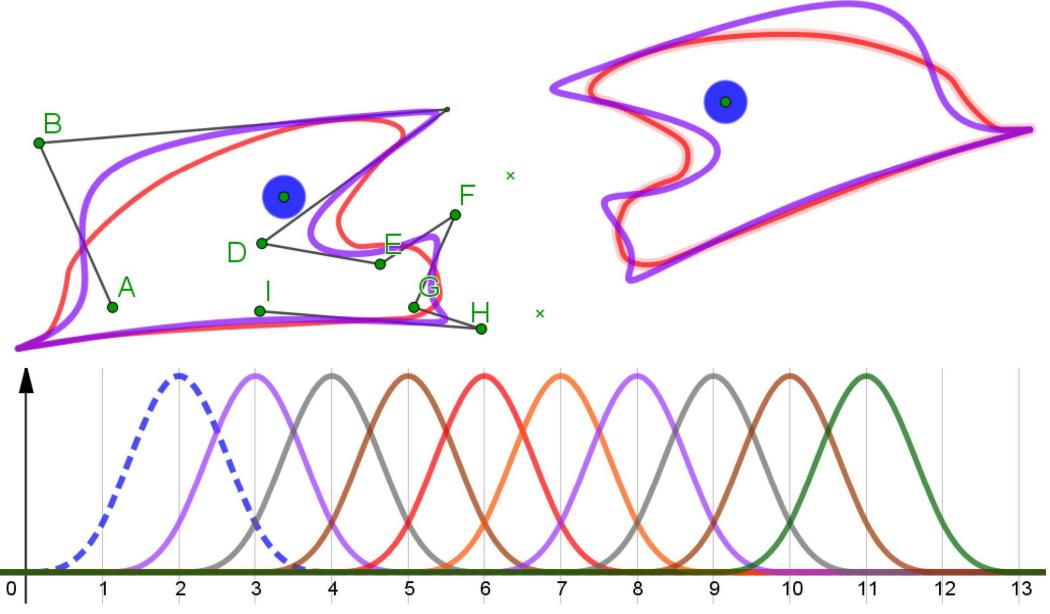


Basispolynome vom Grad 4, aber die Summe war nicht konstant 1..

B-Splines haben gestückelte Basispolynome vom Grad 3 und die Summe ist genau konstant 1.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

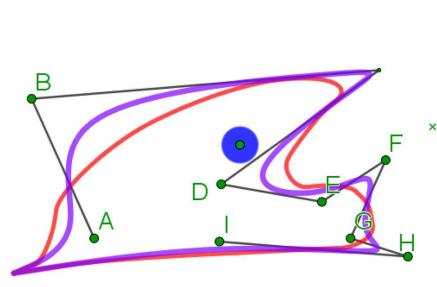
Violett: NURBS mit echten B-Splines



Basis für B-Splines, sie werden gleich erklärt. Stets sind nur p+1=4 Basis-Elemente wirksam.

Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, http://www.mathematik-sehen-und-verstehen.de Folie 9

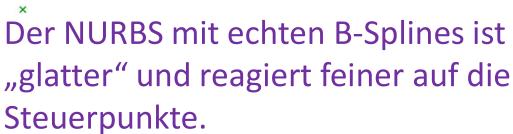
Vergleich der Möglichkeiten für NURBS



Warum eigentlich Summe 1?

Bildet man die Steuerpunkte P_i affin ab, so ist zu wünschen, dass der Spline aus den Bildpunkten P_i' auch wirklich mit dem **affinen Bild** des Ur-Splines

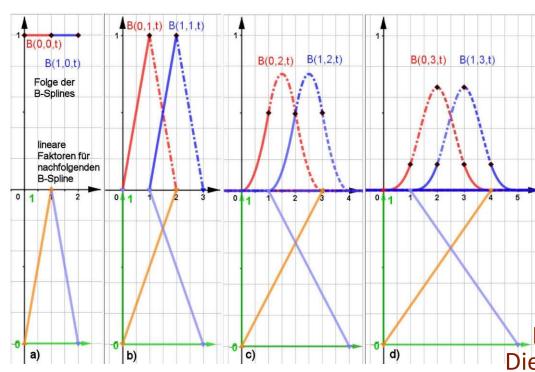
übereinstimmt. Wegen $P \to AP + \vec{b}$ muss dafür aber $\sum_{i=0}^3 B_i \vec{b} = \vec{b}$ gelten. Also muss $\sum_{i=0}^3 B_i = 1$ sein.



Die Einfachversion mit Polynomen 4. Grades ist "didaktische Erfindung" und nicht so edel.

Aber Lernende können sie **selbst** finden. Wie sind die echten B-Splines definiert?

Rekursive Definition der B-Splines



$$B_{0,2}(t) = \frac{t}{2} \cdot B_{0,1}(t) + \frac{3-t}{2} \cdot B_{1,1}(t)$$

$$B_{1,2}(t) = B_{0,2} (t-1)$$

Bestehen aus 3 Parabelstücken

$$B_{0,3}(t) = \frac{t}{3} \cdot B_{0,2}(t) + \frac{4-t}{3} \cdot B_{1,2}(t)$$

 $B_{1,3}(t) = B_{0,3}(t-1)$

Bestehen aus 4 Stücken aus Polynomen 3. Grades

Die gelben Geraden bilden [0,p] auf [0,1] ab. Die blauen Geraden bilden [1,p+1] auf [0,1] ab.

$$B_{0,0}(t)=1$$
 für $0\leq t\leq 1$ und 0 sonst.
Verschiebungsregel $p=$ Polynomgrad

$$B_{i,p}(t) := B_{0,p}(t-i)$$
 für $i \geq 1$ und $p \geq 0$ also $B_{1,0}(t)$ = 1

Multiplikation mit den Geraden darunter, p->p+1

also
$$B_{0,1}(t) = \underline{t} \cdot B_{0,0}(t) + (2-t) \cdot \underline{B_{1,0}(t)},$$

 $B_{1,1}(t) = B_{0,1}(t-1)$

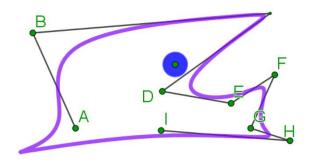
B-Splines 3. Grades reichen in der Praxis.

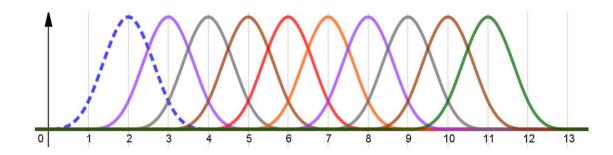
Zweifache Differenzierbarkeit reicht.

Mit der Verschiebungsregel erzeugt man für n Steuerpunkte (mindestens) n solche "Hügel".

NURBS mit B-Splines vom Grad 3 sind hier mit "Knoten" im Abstand 1 gezeigt

In jedem Intervall der Breite 1 bilden 4 Hügel eine Basis.

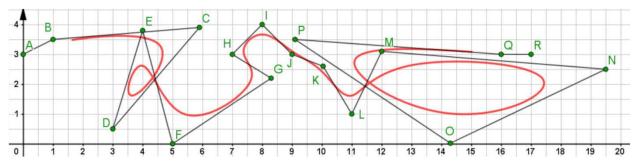




"Karl" ist die Parameterkurve

$$x(t) = A_x B_{0,3}(t) + B_x B_{1,3}(t) + C_x B_{2,3}(t) + D_x B_{3,3}(t) + E_x B_{4,3}(t) + F_x B_{5,3}(t) + G_x B_{6,3}(t) + H_x B_{7,3}(t) + I_x B_{8,3}(t)$$

$$y(t) = A_y B_{0,3}(t) + B_y B_{1,3}(t) + C_y B_{2,3}(t) + D_y B_{3,3}(t) + E_y B_{4,3}(t) + F_y B_{5,3}(t) + G_y B_{6,3}(t) + H_y B_{7,3}(t) + I_y B_{8,3}(t)$$



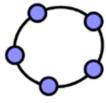
Seite 379

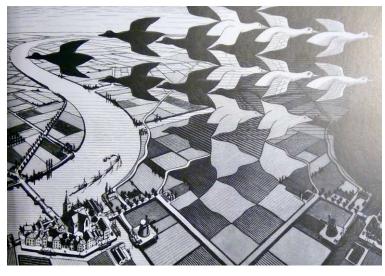
Kreativen Erfindungen sind Tor und Tür geöffnet!

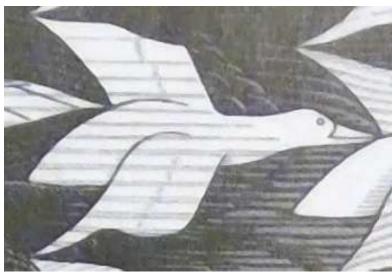
Ein Beispiel, das nicht im Buch steht, zeige ich nun:

Escher-Metamorphose

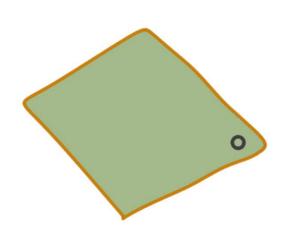
mit B-Splines-NURBS mit vom Grad 3

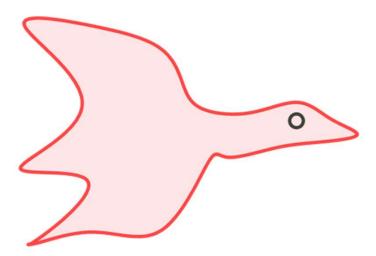






Mauritz C. Escher: Tag und Nacht





Idee aus einem biographischen Film, bei dem Tiere aus den Bildern krabbeln.

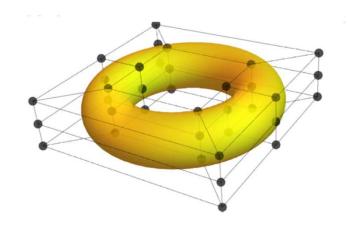
NURBS, Non Uniform Rational B-Splines

$$R_i = rac{w_i b_i}{\sum_{j=0}^3 w_j b_j} \; ext{für } i = 0..3 \; ext{Die } b_i \; ext{sind B-Splines oder} \ ext{Béziersplines}.$$



- Die w_i reelle **Gewichte**.
- Der Nenner garantiert "Summe 1".
- Die Intervallgrenzen werden **Knoten** genannt.
- Eine **Knotenliste** nennt die Parameter der Knoten.
- Es kann auch **mehrfache Knoten** geben.
- Die Abstände der Knoten sind beliebig.
- Der Polynomgrad p kann höher als 3 sein

Mit NURBS lässt sich jede stückweise rational parametrisierbare Kurve darstellen.

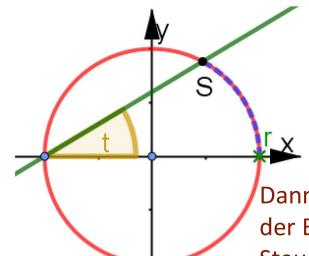


NURBS 3D sind heute für frei gestaltete aber auch "exakte" Formen weit verbreitet.

NURBS für exakte geometrische Objekte

Der Kreis als NURBS

$$R_i = rac{w_i b_i}{\Sigma_{j=0}^3 w_j b_j} ext{ für } i = 0..3$$



Eine **rationale Parametrisierung** kann man evt. finden, indem man eine parametrisierte Gerade durch einen bekannten Punkt mit einer Kurve zum Schnitt bringt.

$$S=(rac{r(1-t^2)}{1+t^2},rac{2rt}{1+t^2})$$

Dann ist die Kurve als Linearkombination

 $C = \sum_{i=0}^{P} A_i R_i$

der Basisfunktionen R_i darstellbar. Die Gewichte w_i und die Steuerpunkte A_i sind passend zu bestimmen.

Für den Nenner ergibt sich mit Béziersplines die folgende Bedingung:

$$w_0(1-t)^3 + w_13(1-t)^2t + w_23(1-t)t^2 + w_3t^3 = 1 + t^2$$

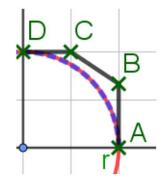
Koeffizientenvergleich liefert die Gewichte: $(w_0, w_1, w_2, w_3) = (1, 1, 4/3, 2)$

Der Nenner der $oldsymbol{R_i}$ ist damit gesichert. Die Zähler müssen erfüllen:

$$A_x(1-t)^3 + B_x 3(1-t)^2 t + C_x 4(1-t)t^2 + D_x 2t^3 = r(1-t^2)$$

$$A_y(1-t)^3 + B_y 3(1-t)^2 t + C_y 4(1-t)t^2 + D_y 2t^3 = 2rt$$

Damit werden die Steuerpunkte: A=(r,0), B=(r,2/3r), C=(r/2,r), D=(0,r)

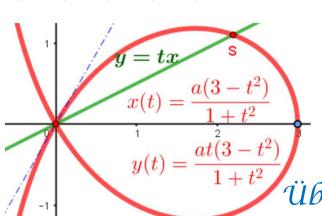




Exakte Geometrie mit NURBS ist also möglich.

S. 380f Die obige Herleitung ist vollständiger.

Was aber nicht im Buch steht, zeige ich nun:



Die
$$\mathsf{Trisektrix}$$
 hat die implizite Gleichung $(a+x)y^2=(3a-x)x^2$

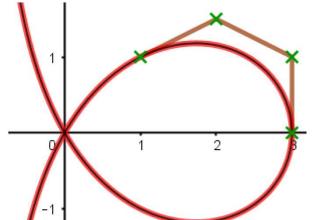
Kurven erkunden und verstehen

Mit einer Geraden durch den singulären Punkt findet man eine rationale **Parametrisierung** (s. links) 3. Grades.

Überraschung

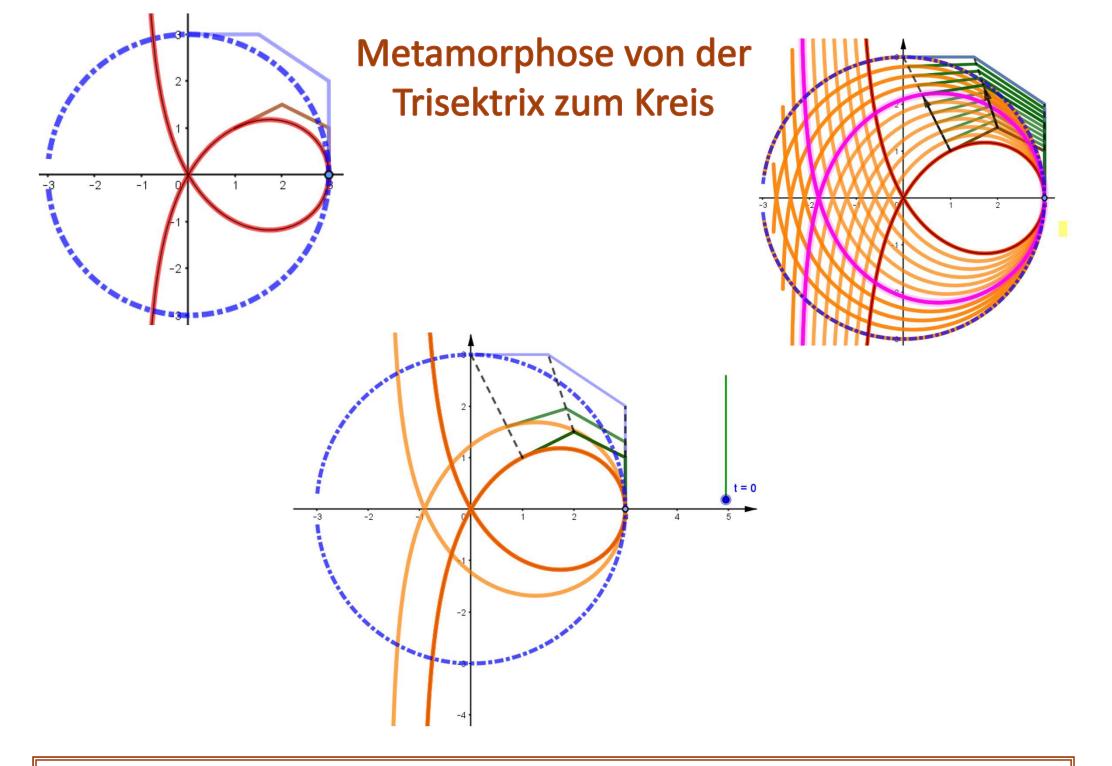
Sie hat denselben Nenner und damit auch dieselben Basispolynome, die wir beim Kreis berechnet haben.

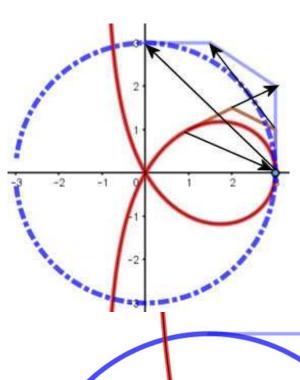
$$w_0=1,\,w_1=1,\,w_2=\frac{4}{3}\,,\,w_3=2\quad R_0(t)=\frac{{(1-t)}^3}{t^2+1},\,R_1(t)=\frac{{3(1-t)}^2t}{t^2+1},\,R_2(t)=\frac{{4(1-t)}t^2}{t^2+1},\,R_3(t)=\frac{2t^3}{t^2+1}$$



Auf die oben gezeigte Art ergeben sich folgende Steuerpunkte, dabei ist 3α die Schlaufenbreite:

$$A = (3a,0), B = (3a,a), C = \left(2a, rac{3a}{2}
ight), D = (a,a)$$

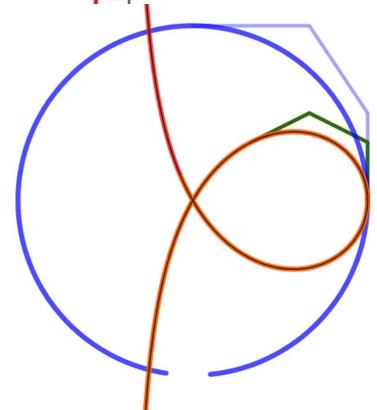




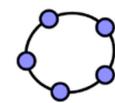
Metamorphose von der Trisektrix zum Kreis, der nun negativ durchlaufen wird

$$x(t) = \frac{2rt}{1+t^2},$$
$$y(t) = \frac{r(1-t^2)}{1+t^2}$$

So steht es im Buch. Durchlauf negativ



Überraschende Volte



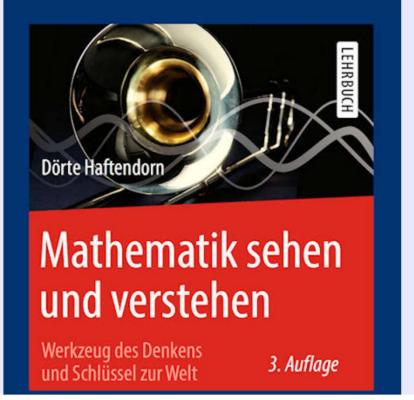
Lesen Sie ausführlicher in den Büchern

Mathematik sehen und verstehen

Höhere Mathematik sehen und verstehen

Werstehen

Wilder Water Wilder und verstehen



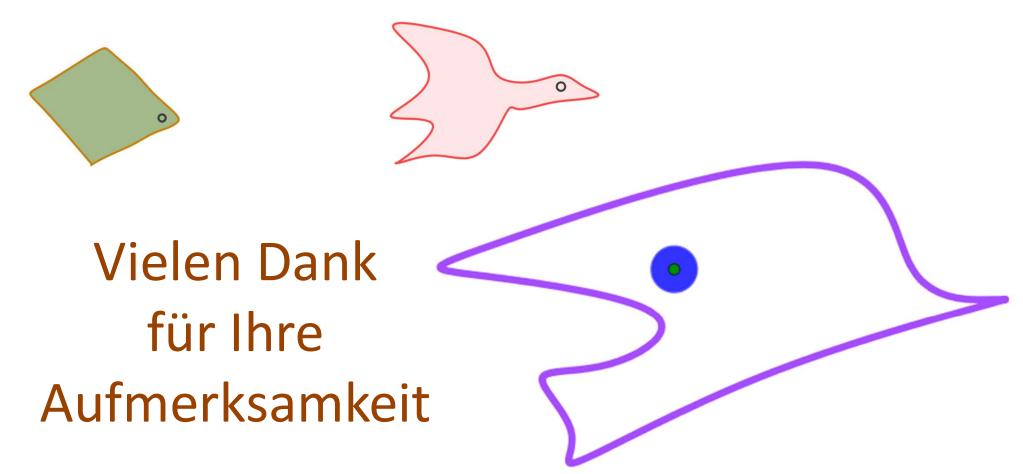
Numerik, 9.2.4, S 248

Splines+NURBS in 5.3 bis 5.4

Die Präsentation und alle gezeigten GeoGebra-Dateien finden Sie im Bereich Vorträge

NURBS Grundlage für Animationsfilme

14. Juni 2022 Münster, Behnke-Kolloquium



Die Präsentation und alle gezeigten GeoGebra-Dateien finden Sie im Bereich Vorträge